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Abbreviation Definition 

IHME Institute for Health Metrics and Evaluation 

IARC International Agency for Research on Cancer 

EHIS European Health Interview Survey 

HSE Health Survey England 

INCA Individual National Survey on Food Consumption 

YLL Years of life lost 

YLD Years lived with disability 

DALY Disability adjusted life years 

HCE Health care expenditure 
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1 Introduction 

Childhood obesity is one of the major public health challenges throughout the world and is rising at 

an alarming rate in most countries. Today there are around 150 million obese children, and this 

number is expected to reach 250 million by 2030. In particular, the rates of increase in obesity 

prevalence in developing countries have been more than 30% higher than those in developed 

countries. Obesity in children could cause various health problems and affect their mental, emotional, 

social, and physical wellbeing. Overweight or obese children are also more prone to becoming obese 

adults and more likely to develop serious illnesses that will shorten their lives. Early childhood obesity 

preventions efforts are therefore a necessity to reverse the current trends.  

The STOP microsimulation framework was designed to examine the health impact and cost-

effectiveness of policies and interventions targeting obesity in children. The model reproduces the 

characteristics of a population and simulates key individual event histories associated with key 

components of relevant behaviours, such as physical activity, and diseases such as diabetes or 

cancer. The model analyses data from several sources using advanced machine learning algorithms 

to generate synthetic populations and their projections. Interventions are then simulated and 

compared with counterfactual scenarios with a view to evaluating the extent to which specific policies 

designed to target certain behaviours could impact disease trends and longevity. The STOP 

microsimulation tool will be used to explore various policy options to address childhood obesity, 

estimates policy impacts on the future burden of childhood obesity in the EU, impact on health care 

expenditure, population well-being, gender and socio-economic inequalities. 

2 Model description 

2.1 Overview 

The STOP microsimulation model simulates the health trajectories of individuals in a synthetic 

population from birth to death and provides multiple cross-sectional representations of the population 

over time. The aim is to develop a framework capable of capturing the main dynamics of, and 

interactions between, health risk factors and their impacts on diseases prevalence. At the beginning 

of the simulation, the model analyses data from different sources and uses statistical tools to 

construct plausible equations capturing the heterogeneity within the population from gender and 

socioeconomic differences to behaviours and diseases incidence. Based on these equations, the 

model generates a large sample of synthetic individuals representing the whole population of 

interest. Each individual will have a set of characteristics such as behaviours and health profile.  As 

time progresses, major life-course events are simulated such as birth, immigration, acquiring a new 

behaviour or a disease and death. Events compete to occur in each simulated life based on a set of 

probabilities that are calculated based on each person’s attributes. This randomness reflects the 

unpredictability of key life events and helps in covering a large spectrum of possibilities.  At the end 

of the simulation, the tool calculates different metrics reflecting the future evolution of behaviours 

and diseases within the population. Various interventions and alternative scenarios can be tested by 

updating the equations, parameters, or the initial distributions of behaviours and diseases.  

In the development of the STOP microsimulation tool, the emphasis has been placed on the following 

attributes: 
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• Generic: it must be possible to use the same framework to test any combination of risk 

factors, provided that suitable risk factor data exist.  

 

• Flexible: starting from the same data, a user must be able to test alternative hypotheses in 

terms of the causal links between variables.  

 

• Transparent: the model displays all the inputs, equations, parameters that are used in the 

simulation. A user is, therefore, able to check and confirm every step of the simulation.  

 

• Efficient: the aim is to minimise the time, processing power and memory needed to run the 

simulation, once the model code is fully developed and optimised, and a suitable user 

interface is available.  

 

• Accessible: the model’s user interface must be intuitive and user-friendly for most users, 

and at the same time it must offer advanced research users the option of updating and 

developing the source code in a way that would allow them to address new research 

questions.   
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The global architecture of the simulation framework could be summarised as follows: 

 

 

Figure 1: Global architecture of the simulation framework 

2.2 Demographics 

2.2.1 Data 

In microsimulation modelling, the choice of a baseline scenario is arbitrary but critical as it could 

influence the outcomes. While in other models they used country-specific demographic data, we 

decided to use UN Data ( https://population.un.org/wpp/Download/Standard/Population/) for the following 

reasons: 

• The data are freely available in the UN database for most countries from 1950 until 2100, 

covering a variety of demographic metrics, both estimates and projections by gender and 

age-groups. This is very important in cross-countries comparisons as the same methodology 

was applied in generating the data for all world regions and countries.  
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• The UN Database is widely used by the modelling community and as such, this choice is 

natural and less prone to biases while ensuring very high-quality standards. Other 

researchers and modellers have also access to the same data and could run the same or 

similar simulations to confirm our conclusions.  

2.2.2 Births 

The demographic module requires birth rates tables to generate historical and projected births for a 

specific country. The tool runs with data extracted from the UN World Population Database but can 

potentially use any other alternative source containing the yearly birth rates by gender. Birth rates 

estimates and projections are available in five-year intervals and the module interpolates the data 

linearly to fill the data for the missing years. 

 
Figure 2: Birth rates by gender in France between 1950 and 2100 

2.2.3 Deaths 

This module requires historical and projected numbers of deaths by year, gender, and age-groups. 

As the UN Database only contains rates for five-year intervals, the module will therefore linearly 

interpolate the rates between two years to generate the needed data for the missing years.  

 

 
Figure 3: Death rates by age-group  in Belgium between 1950 and 2100 
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The demographic module will also smooth the rates to avoid sudden jumps in values between two 

adjacent age-groups while conserving the total number of deaths within the population in that year. 

The tool is initialised with the death rates from the UN database and then updates them using the 

following algorithm: 

 

𝐷(𝑛 + 1, 𝑎) =

{
 
 

 
 

       

2. 𝐷(𝑛, 𝑎) + 𝐷(𝑛, 𝑎 − 1)

3
                           𝑖𝑓 𝑎 = 110

2. 𝐷(𝑛, 𝑎) + 𝐷(𝑛, 𝑎 + 1)

3
                        𝑖𝑓 𝑎 = 0

𝐷(𝑛, 𝑎 + 1) + 𝐷(𝑛, 𝑎) + 𝐷(𝑛, 𝑎 − 1)

3
        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where D(n, a) is the number of deaths for age 𝑎 at the 𝑛𝑡ℎ step of the algorithm. The tool uses 50 as 

a default value for the maximal number of loops, but this value can be updated by the user. This 

algorithm is very fast and most importantly conserves the yearly total number of deaths in each 

gender. Finally, the current simulation tool runs with data extracted from the UN World Population 

Database but can potentially use any other alternative source containing the yearly death rates by 

gender and age-groups. 

 

 
Figure 4: Female deaths in the United Kingdom in 2020 

 

2.2.4 Population 

This module uses historical and projected populations by year, gender and age-groups. As the 

projection data is only available every five years, the module will then linearly interpolate the 

population for each age-group between two years to generate the data for the missing years. The 

module will also smooth the populations using the following algorithm: 
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𝑃(𝑛 + 1, 𝑎) =

{
 
 

 
 

       

2. 𝑃(𝑛, 𝑎) + 𝑃(𝑛, 𝑎 − 1)

3
                           𝑖𝑓 𝑎 = 110

2. 𝑃(𝑛, 𝑎) + 𝑃(𝑛, 𝑎 + 1)

3
                        𝑖𝑓 𝑎 = 0

𝑃(𝑛, 𝑎 + 1) + 𝑃(𝑛, 𝑎) + 𝑃(𝑛, 𝑎 − 1)

3
        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where P(n, a) is the number of people aged 𝑎 at the 𝑛𝑡ℎ step of the algorithm. Similarly to death rates 

algorithm described in the previous section, this algorithm is very fast and most importantly 

conserves the yearly population in each gender. 

 

 
Figure 5: Spain male population by age in 2020 

2.2.5 Immigration 

Births, deaths and immigration are the only drivers of changes in demographics in a population. A 

realistic simulation will, therefore, require the implementation of a consistent immigration module to 

manage the flow of migrants in and of out of the country. While details about births and deaths are 

freely available in several databases, finding accurate data about immigration is more challenging.  

In this framework, modelling immigration is carried out indirectly by imputing the net flow of migrants 

between two consecutive years. For each year of the estimation and projection periods, the tool 

calculates the net migration by age and gender which is defined as the difference by gender and 

age-group between the simulated population and the expected population from the input data. The 

UN World Population Database also contains immigration numbers which allow checking the 

coherence of the model.  

The following formula was used to calculate the net immigration:  

𝑃(𝑎 + 1, 𝑦 + 1) = 𝑃(𝑎, 𝑦) + 𝐵(𝑎, 𝑦) − 𝐷(𝑎, 𝑦) + 𝐼(𝑎, 𝑦) 

Where 𝑃(𝑎, 𝑦), 𝐵(𝑎, 𝑦), 𝐷(𝑎, 𝑦) and  𝐼(𝑎, 𝑦) are respectively the total population, number of births, 

number of deaths and net immigration for the age 𝑎 in year 𝑦. 

The reasoning behind this formula is that any differences between simulated and expected 

populations are solely due to immigration. Therefore, immigration is simulated indirectly to ensure 

that our simulator replicates the expected numbers from the UN World Population Database. 

Consequently, depending on the sign of net immigration, positive or negative, individuals will be 

added or removed from the population. In particular, the attributes of immigrants are sampled from  
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the distributions of the existing individuals with the same gender and age group to ensure that they 

do not create any unwanted biases in the simulation.  

2.3 Risk factors 

Risk factors are any attributes that can increase or decrease the likelihood of acquiring a disease. 

There are two types of risk factors: those that are directly linked to individual behaviours and choices 

such as smoking, alcohol consumption, physical activity, and diet, and those that are long term 

aftereffects of these behaviours such as hypertension and obesity. There is also the particular case 

of certain diseases that are risk factors for other diseases. Diabetes, for example, is a disease but is 

associated with a higher incidence of certain types of cancers such as liver, pancreas, and 

endometrial cancers. The associations between the risk factors are very complex and dynamic and 

could potentially change and evolve due to exogenous shocks such as changes in individual habits 

or the implementation of new interventions and policies.   

The STOP microsimulation is a generalisation of some existing frameworks and was designed with 

the intention of capturing the main correlations and dynamics of health risk factors. The framework 

is completely generic and flexible which will allow a wide range of stakeholders to construct different 

models and test different hypotheses.  

2.3.1 Data 

2.3.1.1 Cross-sectional data 

These are anonymous surveys that represent a large sample of individuals from the population of 

interest. The surveys contain detailed information about the person’s age, gender, socio-economic 

status, behaviours and health profile. The microsimulation tool relies on these granular data to 

construct plausible dynamics capturing both the cross-sectional and time-series dimensions of the 

risk factors. The user, in particular, can select any numerical risk factors from the database and the 

tool will create a model based on this selection (more details in 2.3.2 Risk factors modelling).  

Currently, we have access to the following surveys: 

• European Health Interview Survey (EHIS): is run every 5 years and covers four modules 

on health status, health care use, health determinants and socio-economic background 

variables. 

• Health Survey England (HSE): provides information about adults aged 16 and over, and 

children aged 0 to 15, living in private households in England.  

• Individual National Survey on Food Consumption (INCA): is the French national dietary 

survey and covers diet, eating habits, and food supplements. 

The users have also the possibility to use their proprietary data. 

2.3.1.2 Relative risks 

Relative risks are quantitative measurements of the strength of associations between risk factors 

and diseases. They translate how certain behaviours such as smoking, diet, physical activity and 

alcohol consumption among others could increase the likelihood of acquiring diseases. Overweight 

and obese individuals, for example, are more likely than normal-weight individuals to develop type 2 

diabetes (T2D) which is, in turn, a risk factor for certain cancers.  

In the mathematical language, relative risk is a ratio of the probability of acquiring a disease in the 

group exposed to a risk factor versus the probability of the same event occurring in the non-exposed  
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group. Relative risks play a key role in this framework by translating different behaviours and choices 

to probabilities that can be used throughout the simulation to generate disease incidence events.  

Although there are several ways of linking risk factors with diseases such as risk equations, we 

decided to use relative risks for the following reasons: 

• Relative risks are available in the literature and some databases for most risk factors and 

diseases. Their intuitive definition facilitates their measurements and there is less of a need 

to apply advanced mathematical models which, in fine, reduces the risks of overfitting the 

data.  

• Relative risks fit well in our framework by providing the necessary flexibility to start from the 

same data and build new models. Risk equations, on the other hand, are very rigid and the 

users must provide all the necessary components to use them.   

 
Figure 6: BMI Relative risk for diabetes and breast cancer in women. 

2.3.2 Risk factors modelling 

As time progresses in the simulation, individuals will get older, and it is necessary to update their 

attributes while accounting for the multitude of relationships between the different variables. A big 

component of any microsimulation tool is to properly model the causality, cross-sectional 

correlations, and dynamics of the risk factors.  

2.3.2.1 Causality 

Causality is a very difficult concept to model as the hierarchical structure of interactions between 

health risk factors is still not well understood. In this framework, we implemented a flexible structure 

that allows the users to define the flow of causality. At the beginning of the simulation, the users can 

upload their files where they attribute specific levels to the risk factors. Based on this hierarchical 

structure, risk factors from the same level are considered cross-sectionally correlated, whereas any 

risk factor from a certain level is going to be impacted by all the risk factors that are situated in lower 

levels. The tool will use this information to cluster the risk factors, calibrate the mathematical models 

and update individuals’ attributes.  This causality map will be followed to transmit the effects of 

interventions on risk factors from lower levels to others on higher levels. Finally, this structure is 

entirely flexible and by updating the information in their original risk factors-levels mapping files, the 

users can create new/eliminate old causality links between the existing risk factors.  
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Figure 7: Example of a mapping file with 3 levels and 5 risk factors. 

2.3.2.2 Risk factors dynamics: Theory 

In the absence of longitudinal information, the microsimulation tool attempts to construct plausible 

dynamics using cross-sectional data. We follow the following steps to update the risk factors between 

two timesteps. We apply these steps for all hierarchal levels in ascending order, starting from the 

lowest level up to the highest level. 

Step 1: Decomposing the risk factors. 

As risk factors distributions exhibit heteroskedasticity, we use a linear model with non-constant 

variances to decompose them into components that can easily be projected into the future. The main 

idea here is to decompose the risk factors into two components: 

• Deterministic factors (DF): are known based on the available information about the 

individual at that stage of the calculation. For a risk factor of interest, the deterministic factors 

list includes all the risk factors from the lower levels. The following table is derived from the 

previous example (Figure 6):  

 

Risk factors Deterministic factors 

Smoking 
age, gender, education, income 

Physical activity 
age, gender, education, income 

Diet 
age, gender, education, income 

BMI 
age, gender, education, income, smoking, 

physical activity, diet 

Blood pressure 
age, gender, education, income, smoking, 

physical activity, diet, BMI 
Table 1: List of deterministic factors for each one of the risk factors. 

 

Stochastic factors (SF): is the part of the risk factors that cannot be explained with the 

existing information. These are exactly the residuals obtained from the linear regression with 

non-constant variances models.  
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At the end of this step, we get the following decomposition: 

𝑅𝐹(𝑡) =∑𝛽.𝐷𝐹(𝑡) + 𝜎(𝐷𝐹(𝑡)). 𝑆𝐹(𝑡) 

Step 2: Projecting deterministic factors 

Projecting deterministic factors is straightforward as they either stay constant or evolve predictably 

based on the available information at this stage of the projection process: 

𝐷𝐹(𝑡) → 𝐷𝐹(𝑡 + 1) 

Step 3: Converting stochastic factors into independent factors 

Projecting stochastic factors is very challenging as any change in one of the stochastic factors will 

certainly impact the others due to their dependencies. A first step in the modelling process is to 

decompose these stochastic factors into independent factors using statistical techniques such as 

Independent Component Analysis (ICA). 

𝐼𝐹(𝑡) = 𝐴. 𝑆𝐹(𝑡) 

Step 4: Projecting independent factors 

Changes in one of the independent factors do not impact the other independent factors. They can 

be freely projected into the future: 

𝐼𝐹(𝑡) → 𝐼𝐹(𝑡 + 1) 

Introducing some stochasticity at this stage is paramount to account for the changes in behaviours 

(e.g. obese person losing weight, starting a diet, exercising).  

 

Step 5: Converting independent factors into stochastic factors 

Now that we have the independent factors at 𝑡 + 1, we can apply the reverse transformation of 

step 3 to revert to the stochastic factors: 

𝑆𝐹(𝑡 + 1) = 𝐴−1. 𝐼𝐹(𝑡 + 1) 

Step 6: Creating the risk factors 

We get the risk factors projection at 𝑡 + 1 by combing the deterministic and stochastic factors from 

the previous steps: 

 

𝑅𝐹(𝑡 + 1) =∑𝛽.𝐷𝐹(𝑡 + 1) + 𝜎(𝐷𝐹(𝑡 + 1)). 𝑆𝐹(𝑡 + 1) 

2.3.2.3 Risk factors dynamics: Application 

In this example, we used EHIS data from 2006, 2007, 2008 surveys to create an initial synthetic 

population and subsequently project it until 2050. The original surveys constituted of 51,744 

individuals while our simulated population had 978,760 virtual individuals. In this example, we 

adopted the following 3-levels hierarchical structure of risk factors: 

• Level 0: age, gender, education and income. 

• Level 1: alcohol consumption, diet, smoking, and physical activity. 

• Level 2: BMI 
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Following the steps described in the previous section, we generated sequentially the initial risk 

factors exposures for these individuals starting from level 0 up to level 2 using the following equation: 

𝑅𝐹(0) =∑𝛽.𝐷𝐹(0) + 𝜎(𝐷𝐹(0)). 𝑆𝐹(0) 

The deterministic component is obtained sequentially as explained in the previous section, whereas 

the independent component is sampled directly from the original distribution and then converted 

to the stochastic component. This slight modification is indispensable as the previously explained 

algorithm only works when there is a transition between two consecutive dates whereas in this case, 

the simulation is still at the initialisation phase.  Sampling from the original distribution is a statistically 

consistent approach to generate the initial values.  

 

The difference in means, standard deviations, and correlations are very small between the two sets 

of data, proving that the algorithm is very efficient in capturing the first moments, correlation, and 

heteroskedasticity.  

 
Figure 8: Comparison of real and synthetic data. 

 

 
Figure 9: Differences in correlations between real and synthetic data 

The same previously described algorithm is used to project the risk factors into the future. In this 

case, we apply sequentially the previously described steps to the following risk factors: diet, physical 

activity, smoking, alcohol consumption and BMI. In the below example, BMIs were projected from  
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2009 to 2050. The distribution shift to the right is an indication of future increases in obesity 

prevalence in the population.  

 
Figure 10: BMI projections between 2009 and 2050 

2.4 Diseases  

Throughout their lives, individuals may acquire new diseases because of their direct behaviours and 

lifestyles, environment, or just because of bad luck. There are very strong associations between risk 

factors and the incidence of certain types of diseases. Being affected by obesity for example greatly 

increases the risks of developing type 2 diabetes as the more excess weight the person has, the 

more resistant their muscles and tissue cells become to their insulin hormone. A key component of 

any health  

The STOP microsimulation framework accounts for the associations between risk factors and 

diseases by using equations to translate exposures to risk factors into probabilities that are used to 

simulate the incidence of diseases in the population. The framework is very generic and could 

accommodate a large number of morbidities as we only need to upload the relevant relative risk 

parameters to account for new diseases. The main idea is to calibrate the model so that the 

distributions of diseases in the initial synthetic population are identical to those in the real population. 

These parameters are subsequently used throughout the projection (details in section 2.4.2 Disease 

modelling). 

Although, we assume the association risk factor-disease constant throughout the simulation, any 

changes in the distribution of a risk factor, will still translate to more/fewer disease cases through 

relative risk equations. The reasoning behind this approach is that any change in the prevalence of 

a disease is therefore solely caused by changes in risk factors distributions alongside the ageing 

effect of the population. 

2.4.1 Data 

The data about diseases are extracted from the IHME database which covers most countries and 

diseases. The microsimulation tool uses the following rates from the database: 
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2.4.1.1 Incidence 

Incidence is the number of new cases in the population within a specified period. Although incidence 

rates are kept constant over time in the current version of the microsimulation tool, they can 

easily/should be updated as time progresses in the simulation to reflect future improvements in 

medical care and disease prevention. With that being said, the incidence of diseases for each 

simulated individual will be updated to reflect their behaviours and the extent of their exposures to 

risk factors.  

 
Figure 11: Asthma incidence rate in Italy in 2017. 

2.4.1.2 Prevalence 

Prevalence is the proportion of a population found to be affected by a medical condition at a given 

point in time. The prevalence in the initial population is used to calibrate the microsimulation 

parameters. However, as time progresses, both the risk factors distributions and the demographic 

of the population are the main drivers of the prevalence. 

 
Figure 12: Diabetes prevalence rate in Portugal in 2017. 
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2.4.1.3 Excess mortality 

Excess mortality rate is the proportion of deaths within a designated population of "cases" (people 

with a medical condition) over the course of the disease. These rates are kept constant over time in 

the simulation, but they should be continuously updated to reflect future improvements in medical 

care such as early diagnosis and better treatments. However, the next version of the microsimulation 

tool will adjust mortality rates using hazard ratios as some risk factors increase the likelihood of death 

because of a certain disease.   

 
Figure 13: COPD excess mortality for the 35-39 age group in European countries in 2010. 

2.4.1.4 Remission 

Remission rate is the rate at which people with a disease go back to a state in which they have the 

same survival prospect as people without the disease. Remission rates are kept constant over time 

in the current version of the microsimulation tool, but they can easily/should be updated as time 

progresses in the simulation to reflect future improvements in medical care.  

 
Figure 14: Low back pain remission rates for the 70-74 age group in European countries in 2010. 

https://en.wikipedia.org/wiki/Proportionality_(mathematics)
https://en.wikipedia.org/wiki/Death
https://en.wikipedia.org/wiki/Population_(statistics)


 
 

 19 

 

2.4.2 Diseases modelling 

Now that we have the data about diseases and the risk factors, we need to combine them in a way 

that captures the multitude of associations observed in the population. Our approach is to calibrate 

the parameters based on disease prevalence in the initial population and then use these parameters 

during the projection period. Changes in disease prevalence are going to occur because of the 

changes in risk factors distributions and ageing of the population. 

 

Assuming we have N risk factors with Relative-Risk (RR). We use the following formula to estimate 

the Overall Relative Risk (ORR): 

𝑂𝑅𝑅 =
∏ 𝑅𝑅𝑖
𝑁
𝑖=1

𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(∏ 𝑅𝑅𝑖
𝑁
𝑖=1 )

 

where 𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is the average relative risk for the whole population. Based on this multiplicative 

framework, ORR is used in the simulation to combine the effects of various risk factors into a single 

metric.  It is defined for each individual separately, but as a relative risk measure, ORR is population-

dependent. 

The above-mentioned formula is very intuitive and has the following properties: 

• A risk factor with no impact on a disease (RR = 1) will not have any impact on the Overall 

Relative Risk (ORR). 

 

• ORR has also the following properties: 
 

𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(ORR) = 1 
and: 

𝑂𝑅𝑅 ≥ 1 ⇔∏𝑅𝑅𝑖

𝑁

𝑖=1

 ≥ 𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(∏𝑅𝑅𝑖

𝑁

𝑖=1

) 

which means that the ORR>1 only if the combined effect of the risk factors is greater than the 

average for the whole population. 

 

• In the case of independent risk factors, we get the following formula: 
 

𝑂𝑅𝑅 =∏
𝑅𝑅𝑖

𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑅𝑅𝑖)

𝑁

𝑖=1

 

 

which is equivalent to the formula used in the Fresher Microsimulation tool.  

 

The conditional incidence, 𝐼|𝑅𝑖𝑠𝑘 of a disease with an incidence I, knowing the risk profile (ORR) is 

the following: 

 

𝐼|𝑅𝑖𝑠𝑘 = 𝑂𝑅𝑅. 𝐼 
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Instead of having a homogenous distribution of diseases in the population, this formula allows 

adjusting the incidence of diseases by each individual’s exposures to the risk factors. In particular, 

we have the following property: 

𝑂𝑅𝑅 ≥ 1 ⇔ 𝐼|𝑅𝑖𝑠𝑘 ≥  𝐼 
 

Which means that the incidence of diseases is higher for individuals with higher overall risk factors 

exposures. 

 

A similar formula is used to calculate disease status in the initial population. For every synthetic 

individual, we use the following formula to generate the initial disease status:  

 

𝑃|𝑅𝑖𝑠𝑘 = 𝑂𝑅𝑅. 𝑃 
 

𝑃 is disease prevalence at the start of the simulation. In particular, we have the following property: 

 

𝑂𝑅𝑅 ≥ 1 ⇔ 𝑃|𝑅𝑖𝑠𝑘 ≥  𝐼 
 

Which means that the prevalence of diseases is higher for individuals with higher overall risk factors 

exposures. 

2.4.3 Residual mortality 

Fatality rates are directly obtained from the IHME database as described previously. These rates 

explain part of the mortality within the population, but there are also additional deaths that are 

occurring and are due to either natural causes or non-modelled diseases.  

 

Our choice is to calibrate the residual mortality so that the overall mortality within the simulation 

matches the all-cause mortality from World Population database. Once these fatalities rates are 

calculated, they are going to be kept fixed and used in the alternative scenarios.   

 

If we note by 𝑀 the number of modelled diseases, f the overall mortality rate, and 𝑋𝑖 and 

𝑓𝑖 respectively the event and fatality rate of the disease 𝑖, the residual mortality rate 𝑓𝑟 is therefore 

given by the following formula: 

 

𝑓𝑟 = 1 −
1 − 𝑓

𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(∏ (1 − 𝑋𝑖
𝑀
𝑖=1 ))

 

 

In the case of independent diseases, the formula can be reduced to the following: 

𝑓𝑟 = 1 −
1 − 𝑓

∏ (1 − 𝑝𝑖𝑓𝑖
𝑀
𝑖=1 )

 

Where 𝑝𝑖 is the prevalence of disease  𝑖.  

This last formula can be simplified further in the case of small fatality rates: 
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𝑓𝑟 ≃ 𝑓 −∑𝑝𝑖𝑓𝑖

𝑀

𝑖=1

 

This equation is identical to the equation in the Fresher Microsimulation paper. 

2.5 Interventions 

The STOP microsimulation framework is designed to assess the impacts of policies and 

interventions by projecting populations, risk factors, diseases and life trajectories into the future in 

alternative scenarios that do and do not involve such policies and interventions. To do so, we run 

the model twice with the same seeds and compare outcomes. The first run is called the “baseline 

scenario” where demographics, risk factors, and diseases are projected based solely on estimates 

from historical data. The second run is called the “intervention scenario” where a specific policy 

targeting a serious health issue in society was applied to the population and resulted in a modification 

of the underlying risk factor distribution. By comparing the two simulations in terms of population 

demographics and burden of diseases, the tool can estimate the extent of effectiveness of the 

intervention.  

 

Two types of interventions have already been implemented in the microsimulation tool: 

 

• Absolute effect: these interventions have the same effect on each individual in the targeted 

group independently from their initial risk factors exposures.  In a school fruit and vegetable 

scheme, for example, every child will receive a free piece of fruit and vegetable each school 

day. The portion size is not linked to the child socio-economic background, weight or height 

but purely on the school policies and resources. 

 

•  Relative effect: the effect of these types of interventions is higher for individuals with higher 

initial risk factors exposures. A smoking ban, for example, will affect the heavy smokers 

(those who smoke greater than or equal to 25 or more cigarettes a day) more than the light 

smokers.  Similarly, a new sugar tax policy will have a greater effect on obese people due to 

their greater weights and probably sugar consumption. 

2.6 Global burden of diseases 

The microsimulation tool generates cross-sectional representations of the population of interest 

throughout the projection with detailed information about demographics, risk factors distributions, 

disease prevalence, and mortality. The tool is equipped with additional functions that can analyse 

these data and create summary reports about the extent of disease burden in the country. The 

outputs are standardised which make them very easy to understand and at the same time very 

effective when comparing different interventions.  

2.6.1 Years of life lost (YLL) 

Years of life lost is a measure of premature mortality. It is an estimate of the average years a person 

would have lived if he or she had not died prematurely. It is important to set up an upper reference  

 

age to calculate the years of potential life lost. The reference age should correspond roughly to the life 

expectancy of the population under study. The YLL formula can be expressed as follows: 

https://en.wikipedia.org/wiki/Average
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𝑌𝐿𝐿 = ∑ 𝑌𝐿𝐿(𝐼)

𝐼 𝑖𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 

with  

𝑌𝐿𝐿(𝐼) = {
𝐴𝑔𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝐴𝑔𝑒𝑑𝑒𝑎𝑡ℎ,         𝑖𝑓 𝐼 𝑑𝑖𝑒𝑠

0                              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 

 

2.6.2 Years lived with disability (YLD) 

With the advances of medical care, technology and treatments, mortality rates of diseases are 
decreasing, particularly in western countries. However, there is still a loss in quality of life associated 
with each disease. Years lived with disability (YLDs) are a measurement of the burden of disease 
and is calculated by multiplying the prevalence of a disorder by the short- or long-term loss of health 
associated with that disability (the disability weight).  

In the case of comorbidities, we use the same approach as in the Fresher microsimulation tool to 
calculate YLD: 

𝑌𝐿𝐷 = ∑ 𝑌𝐿𝐷(𝐼)

𝐼 𝑖𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 

with 

𝑌𝐿𝐷(𝐼) = 1 −∏(1 − 𝐷𝑊𝑖)

𝑀

𝑖=1

 

For a patient I with M morbidities with disability weights (DWi). 

2.6.3 Disability-adjusted life years (DALY) 

The disability-adjusted life year (DALY) is a measure of overall disease burden, expressed as the 

number of years lost due to ill-health, disability or early death. DALYs are calculated by taking the 

sum of these two components: 

𝐷𝐴𝐿𝑌 =  𝑌𝐿𝐿 + 𝑌𝐿𝐷 

2.6.4 Health care expenditure  

Calculating health care expenditure is a key step in understanding the burden of diseases in a 

country. Most of the published research follows a bottom-up approach where they aggregate costs 

at the patients’ level to get the overall cost. Theoretically, this approach is very straightforward and 

compelling but in practice, it is very difficult to get the necessary data to do the analysis, especially 

medical costs for patients with comorbidities.  The STOP framework follows a completely different 

approach by analysing data from different countries to estimate health care expenditures. The main 

idea is to apply machine learning algorithms to find the best estimates of health care expenditure 

based on diseases prevalence.  

The following equation is the main driver of the modelling process: 
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𝐻𝐶𝐸 =  
𝐻𝐶𝐸 𝑃𝑒𝑟 𝐶𝑎𝑝𝑖𝑡𝑎

𝐺𝐷𝑃 𝑃𝑒𝑟 𝐶𝑎𝑝𝑖𝑡𝑎
𝑥 𝐺𝐷𝑃 𝑃𝑒𝑟 𝐶𝑎𝑝𝑖𝑡𝑎 𝑥 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Therefore, estimating health care expenditures requires estimating each one of the three terms on 

the right side of the equation.  

2.6.4.1 Population 

The tool generates synthetic populations throughout the simulation. The total population can be 

easily obtained from these data and used in the calculation of the overall health care expenditure.  

2.6.4.2 GDP per capita modelling 

Although, there are databases with projected estimates of GDP Per Capita for most countries, in the 

absence of these data an ARIMA model can be used to project the GDP from historical data: 

(1 −∑𝜑𝑖 𝐿
𝑖

𝑝

𝑖=1

)(1 − 𝐿)𝑑𝐺𝐷𝑃 𝑃𝑒𝑟 𝐶𝑎𝑝𝑖𝑡𝑎 𝑡 = 𝛿 + (1 +∑𝜃𝑖

𝑞

𝑖=1

𝐿𝑖)𝜀𝑡 

where 𝐿 is the lag operator, the 𝜑𝑖  are the parameters of the autoregressive part of the model, the 

𝜃𝑖 are the parameters of the moving average part and 𝜀𝑡  are error terms. 

 
Figure 15: France GDP Per Capita prediction 2020-2060 

 

2.6.4.3 HCE per capita / GDP per capita modelling 

 In the mathematical language, the problem is equivalent to finding the best function 𝜑 such that: 

𝐻𝐶𝐸 𝑃𝑒𝑟 𝐶𝑎𝑝𝑖𝑡𝑎

𝐺𝐷𝑃 𝑃𝑒𝑟 𝐶𝑎𝑝𝑖𝑡𝑎
= 𝜑(𝑃1, 𝑃2, . . . , 𝑃𝑀) 

With 𝑃1, 𝑃2, . . . , 𝑃𝑀 are the prevalence of diseases in the population. 
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After running a comparative analysis of various machine learning algorithms, we concluded that 

Random Forest was the best one to estimate health care expenditure.  

 
Figure 16: Health care expenditure prediction using random forest 
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3 Implementation 

The STOP microsimulation was written as a C# program with a very intuitive user interface. For the 

statistical analysis, the tool calls some external functions from R programming language which is 

very efficient in statistical analysis and machine learning algorithms. There are different tabs where 

the user can upload/check the inputs and update parameters. At the end of the simulation, the tool 

generates graphs and tables with summary statistics.  

3.1 General architecture 

 
Figure 17: General architecture of the STOP microsimulation tool. 

 

• Database: contains all the necessary data for the simulation such as birth and death rates 

for most countries by age and gender, total population, relative risks for risk factors-diseases 

associations, epidemiological rates for most countries by age and gender, disability weights 

and GDPs. The database also contains some surveys with detailed information about the 

population of some of the European countries. This module also contains functions to 

smoothly interpolate missing information whenever it is necessary.  

 

• Demographics: This module is divided into two components: 
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o Individuals:  These are the building blocks of the simulation and contain important 

information about the simulated individual such as age, gender, education, income, 

risk factors exposures and comorbidities. These attributes are updated throughout 

the simulation based on rules and equations extracted from cross-sectional surveys 

or hard-coded in the framework.  

 

o Population: This is a collection of virtual individuals and represents the population of 

interest. The initial synthetic population is generated from historical data based on a 

cross-sectional survey and then projected into the future.  

 

• Risk factors: are implemented as additional attributes to the virtual individuals. Their values 

are updated continuously throughout the simulation based on equations derived directly from 

cross-sectional surveys. They are modelled as generic factors and as such can adapt to any 

set of risk factors selected by the users provided that they are numerical and present in the 

cross-sectional survey.  

 

• Diseases: this module is divided into two components: 

 

o Disease table: contains all the epidemiological rates in raw formats and additional 

functions to interpolate and smooth the missing information. 

 

o Disease module: retrieves epidemiological rates from the tables and updates them 

for each individual based on their risk factors exposures as explained previously.  

 

• Interventions: this class is called in the alternative scenario to update risk factors 

distributions based on the intervention type and parameters. Two types of interventions have 

been implemented so far: absolute and relative effects. The plan is to extend this list to 

cover additional types of policies and interventions.  

 

• Statistical analysis: uses inputs from the user to create a hierarchical structure for the risk 

factors. The tool gets the necessary data from the cross-sectional surveys and calls external 

functions from R programming language for data analysis, machine learning algorithms and 

graphing. At the end of this analysis, the module generates equations which are used 

throughout the simulation to update risk factors exposures. 

 

• Simulation: this module is the core of the microsimulation process.  It is connected to all the 

other modules and uses them to run a full simulation from the initialisation to the final outputs.  

 

• Global burden of diseases: takes a simulated population as input and calculates 

standardised metrics such as YLL, YLD, DALY.  
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3.2 Graphical user interface (GUI) 

3.2.1 Data 

 
Figure 18: Data analysis tabs. 

The first two tabs of the microsimulation tool allow the users to upload their data and analyse the 

quality. This step is of paramount importance as outliers could undermine the quality of any 

mathematical modelling. The first tab, for example, is a very friendly interface to visualise the raw 

data. The users, therefore, have access to the data structure, dimensions, and all the available 

variables. In the second tab, the user can select a risk factor to analyse and run some summary 

statistical analysis functions to check the data quality.  

3.2.2 Model 

 
Figure 19: Static model tab. 
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In this tab, the user uploads a mapping file containing the hierarchical structure of the risk factors. 

The file consists of a table mapping the risk factors to their levels in the hierarchy. The 

microsimulation tool relies on these data to determine the variables of interest and subsequently 

uploads their data from the cross-sectional survey provided by the user. Statistical tools are then 

used to calibrate the parameters. At the end of this step, the tool generates tables with the 

parameters and their statistical significance, graphs, and correlations by hierarchical level. 

3.2.3 Initial population 

 
Figure 20: Initial population tab. 

In this tab, the user chooses the country of interest and what proportion of the population to simulate. 

The tool relies on data from the UN database to generate the basic attributes of the initial population. 

Socio-economic status is inferred from the cross-sectional survey provided by the user. The 

previously described model equations are used to generate the initial risk factors values for synthetic 

individuals. The tool creates comparative tables between the real and synthetic populations.  
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3.2.4 Dynamic model 

 
Figure 21: Dynamic model tab. 

In this tab, a time component is added to the hierarchical structure and the models are calibrated 

again using multiple years from the cross-sectional survey. These equations are subsequently used 

in the projection to update the risk factors values between consecutive years. At the end of this step, 

the tool generates tables with the parameters and their statistical significance, graphs, and 

correlations by hierarchical level. 
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3.2.5 Risks & diseases 

 
Figure 22: Risks & diseases tab  

In this tab, the user selects the list of diseases to include in the simulation. The tool displays 

epidemiological rates in separate graphs (prevalence, incidence, excess mortality, and remission 

rates). The user can, therefore, use this tab to check the consistency of diseases data before running 

any full-scale simulation. 

3.2.6 Interventions/microsimulation test  

 
Figure 23: Interventions and microsimulation tests tabs. 

In the last two tabs, the user can first check the microsimulation by running a simple quick test. At 

this stage, the tool uploads all the necessary information from the other tabs such as country of 

interest, the hierarchical structure, and mathematical models, and runs a simulation. At the end of 

this step, the tool generates projected statistics. In the next tab, the user selects the type and  
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parameters of the intervention and run a full-scale simulation. The tool displays comparative graphs 

of the baseline and intervention scenarios. 

4 Futures developments and challenges 

4.1 Future developments 

4.1.1 Default model 

The STOP microsimulation is a generic platform that projects populations into the future to estimate 

the cost-effectiveness of policies. The tool is a flexible framework for researchers with quantitative 

backgrounds to create a variety of models and test different interventions and policies. However, we 

also wanted to build a tool for people with little background in mathematics and computer science or 

the necessary data to run simulations. Our idea is to add a default model to the microsimulation tool 

that covers the most important risk factors and diseases in childhood obesity. The model will be 

available by default in the microsimulation tool, but users are also encouraged to build their models 

and use different data.   

4.1.2 Risk factors/diseases and mortality 

In this current implementation, we consider that the mortality of a disease is the same for all the 

patients independently from their risk and health profiles. However, there are numerous publications 

assessing the interactions between risk factors, diseases, and mortality. For example, COPD 

mortality is higher in smokers compared to non-smokers. In the next version of the tool, we will adjust 

disease mortality to account for both the patient behaviour and overall health using hazard ratios, a 

similar approach to risk factors-diseases associations modelling explained previously.  

4.1.3 Interventions 

In its current implementation, the STOP framework can only simulate population-wide interventions 

with relative and absolute effects. The next step is to implement targeted policies where the user 

specifies the group of individuals who are more likely to benefit from the policy. A 5-a-day fruit and 

vegetable campaign, for example, would have a greater impact in low-income households, and 

therefore, it makes more sense to direct governmental efforts and limited resources to the poorest 

strata of society.  

4.1.4 Final implementation 

CHEPI is collaborating with INRA to hire a professional developer to implement the final version of 

the microsimulation tool with the following characteristics: 

• A tool that can be accessed from anywhere, either as a website or as a windows application.  

• A comprehensive database that can be populated by other users.  

• A much shorter running time. 

• More efficient memory management to speed-up the overall convergence of the simulation 

by running larger and faster simulations. 
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4.2 Challenges 

4.2.1 Cancers modelling 

Cancer is a leading cause of death worldwide, accounting for an estimated 9.6 million deaths in 

2018. There is a very strong association between obesity and risk of a variety of types of cancers 

such as oesophageal cancer, pancreatic cancer, colorectal cancer, and breast cancer. Although the 

STOP disease framework is very generic and can accommodate various diseases, it has been very 

challenging to include cancers specifically because of the following reasons: 

• IHME database does not have remission and excess mortality rates for cancers. We need to 

either find a new database with the missing rates or use mathematical models to infer them 

if possible, from incidence and prevalence rates.  

 

• The probability of death because of cancers depends on the time since diagnosis and cancer 

progression.  

 

• WHO IARC – GLOBOCAN is another database with cancer epidemiological rates. The 

database contains prevalence at 1 year, 3 years and 5 years, incidence, and mortality rates 

for 2018 only but for most countries. Although these rates cannot be used directly by the 

microsimulation tool but can be combined with IHME data to infer the missing rates more 

accurately.  

4.2.2 Disease-disease interactions 

In its current implementation, the STOP microsimulation tool does not account for diseases that are 

risk factors for other diseases. Including these interactions will, therefore, improve the accuracy of 

the simulation by making the network of diseases more realistic. Although the framework can be 

easily extended to account for this dimension, there is still some qualitative challenges to consider: 

• The associations between diseases are not always very clear. Some publications confirm 

some of these associations while others consider them not statistically significant depending 

on various parameters such as year of publication and country.  

• Including these associations will require uploading all the disease-disease relative risks which 

are not necessarily available in one single database. The only option is, therefore, to get 

them directly from publications which can be very difficult and time-consuming.  

4.2.3 Data collection 

Besides modelling, the biggest challenge in this project has been finding the necessary data to 

capture all the complex interactions in the system. For the research phase, we used surveys dating 

back to 2008. However, the tool will need more up-to-date and comprehensive data to project 

populations more accurately. In particular, cross-sectional surveys covering socioeconomics and 

behaviours in the European countries are of paramount importance to run cross-countries 

comparisons of the impact of interventions and policies.  
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5 Conclusion 

In this document, we described the STOP microsimulation tool which is a very generic and flexible 

framework to project populations with a view to simulate policies and interventions. The users can 

and are encouraged to use the tool to implement new models and test different hypotheses. We start 

by explaining the different modules, data, assumptions, and mathematical equations used in the 

framework.  We then moved to describe the implementation of the current version of the tool, with a 

particular focus on the user interface. We ended this note by describing the current challenges and 

future developments.  

Our final aim is to create a flexible platform that can be used by different stakeholders to gain insights 

into policy-relevant analyses.  

 

 

 

 


