

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 774548.

EC Framework Programme for Research and Innovation

Horizon 2020 H2020-SFS-2017-2-RIA-774548-STOP: Science & Technology in childhood Obesity Policy

Science & Technology in childhood Obesity Policy

Start date of project: 1st June 2018 Duration: 48 months

D2.4: Peer-reviewed publication on trends in mean BMI and prevalence of BMI categories in children and adolescents by place of residence

Diminishing benefits of urban living for growth and development of school-aged children

and adolescents in the 21st century

Author(s): NCD Risk Factor Collaboration

Version: Version 2

Preparation date: 15/02/2023

Dissemination Level

PU	Public	\mathbf{X}
PP	Restricted to other programme participants (including the Commission Services)	
RE	Restricted to a group specified by the consortium (including the Commission Services)	
со	Confidential, only for members of the consortium (including the Commission Services)	

- 1 Title: Diminishing benefits of urban living for children and adolescents' health
- 2 Authors: NCD Risk Factor Collaboration (NCD-RisC)

3 Optimal growth and development in childhood and adolescence is critical for lifelong 4 health and wellbeing. We used 2,325 population-based studies, with measurement of height and weight in 71 million participants, to report height and body-mass index (BMI) of 5 children and adolescents aged 5-19 years by rural and urban place of residence in 200 6 7 countries from 1990 to 2020. In 1990, children and adolescents in cities were taller than their rural counterparts in all but a few countries. By 2020, the urban height advantage 8 became smaller in most countries, and in many high-income western countries reversed 9 into a small urban disadvantage. The exception was for boys in most countries in sub-10 Saharan Africa, and in some countries in Oceania, south Asia, and the region of central 11 Asia, Middle East and north Africa. In these countries, successive cohorts of rural boys 12 either did not gain height or possibly even became shorter. The difference between age-13 standardised mean BMI of children in urban and rural areas was <1.1kg/m² in the vast 14 15 majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa, and some countries in central and 16 eastern Europe. Our results show that in much of the world, the growth and developmental 17 advantages of living in cities have diminished in the 21st century, whereas in much of sub-18 19 Saharan Africa they have amplified.

20

Throughout school ages (i.e., ages 5-19 years), children and adolescents' growth and 21 development are influenced by their nutrition and environment at home, in the community and at 22 school. Healthy growth and development at these ages helps consolidate gains and mitigate 23 inadequacies from early childhood, and vice versa,¹ with lifelong implications for health and 24 wellbeing²⁻⁶. Until recently, growth and development of older children and adolescents received 25 substantially less attention than in early childhood and adulthood⁷. Increasing policy attention to 26 27 health and nutrition during school years has been accompanied by a presumption that differences in nutrition and environment lead to distinct, and generally less healthy, patterns of growth and 28

development in these ages in cities compared to their rural counterparts⁸⁻¹⁷, even though some
 empirical studies have found that food quality and nutrition are better in cities^{18,19}.

31

Data on growth and developmental outcomes in school ages are needed, alongside data on 32 33 efficacy of specific interventions and policies, to select and prioritise health- and health equitypromoting policies and programmes, both for the increasing urban population and for children 34 who continue to grow up in rural areas. Consistent and comparable global data also help 35 benchmark across countries and draw lessons on good practice. Yet, globally there are far fewer 36 data on growth trajectories in rural and urban areas in these formative ages than for under-five 37 children²⁰ or for adults²¹. The available studies have been in one country, at one point in time 38 and/or in one sex and narrow age groups; the few studies that covered more than one country²²⁻ 39 40 ²⁴ mostly focused on older girls, and used at most a few dozen data sources and hence could not 41 systematically measure long-term trends. Consequently, many policies and programmes that aim to enhance healthy growth and development in school ages focus narrowly, and somewhat 42 generically, on specific features of nutrition or the environment in either cities or rural areas^{10,13,25-} 43 ²⁸, with little attention to similarities and differences between relevant outcomes in these settings, 44 45 nor to the heterogeneity of the urban-rural differences across countries.

46

Here, we report on mean height and body-mass index (BMI) of school-aged children and 47 adolescents in rural and urban areas of 200 countries and territories from 1990 to 2020. Height 48 and BMI are anthropometric measures of growth and development that are influenced by the 49 guality of nutrition and healthiness of the living environment, and are highly predictive of health 50 and wellbeing throughout life in observational and Mendelian randomization studies²⁻⁶. These 51 studies have shown that having low height and excessively low BMI increases the risk of morbidity 52 53 and mortality, and low height impairs cognitive development, and reduces educational performance and work productivity in later life²⁻⁴. Having high BMI in these ages increases the 54

lifelong risk of overweight and obesity and several non-communicable diseases, and might
 contribute to poor educational outcomes^{5,6}.

57

We used 2,325 population-based studies that measured height and weight in 71 million 58 59 participants in 194 countries (Extended Data Fig.1, Supplementary Table 2). We used these data in a Bayesian hierarchical meta-regression model to estimate mean height and BMI of children 60 and adolescents aged 5-19 years by rural and urban place of residence, year and age for 200 61 countries and territories. Details of data sources and statistical methods are provided in Methods. 62 63 Our results represent height and BMI for children and adolescents of the same age over time, i.e., successive cohorts, in each country's rural and urban areas, and the difference between the two. 64 For presentation, we summarise the 15 age-specific estimates, for single years of age from 5 65 through 19, through age standardisation, which puts each country-year's child and adolescent 66 67 population on the same age distribution, and allows comparisons to be made over time and across countries. We also show results, graphically and numerically, for index ages of 5, 10, 15 and 19 68 years in Extended Data and Supplementary Materials. 69

70

71 In 1990, school-aged boys and girls who lived in cities had a height advantage (i.e., were taller) compared to their rural counterparts, except in high-income countries where the urban height 72 advantage was either negligible (<1 cm for age-standardised mean height; posterior probability 73 (PP) for urban children being taller ranging from 0.51 to >0.99) or there was even a small rural 74 advantage (e.g., Belgium, Netherlands, and the UK) (PP for rural children being taller ranging 75 from 0.53 to >0.99 where there was a rural height advantage) (Fig. 1 and Extended Data Fig. 2). 76 The largest height differences between cities and rural areas in 1990 occurred in some countries 77 in Latin America (e.g., Mexico, Guatemala, Panama and Peru), east and southeast Asia (China, 78 79 Indonesia and Vietnam), central and eastern Europe (Bulgaria, Hungary and Romania), and sub-Saharan Africa (DR Congo and Rwanda). The urban height advantage in boys and girls in the 80

named countries ranged from 2.5-5.0 cm and the PP of urban children being taller than rural
 children was >0.99 (see Supplementary Table 3 for country-specific numerical values of height in
 rural and urban areas, their difference, and the corresponding credible intervals).

84

The urban-rural height gap in the late 20th century differed among low- and middle-income 85 countries based on how much children and adolescents in cities and rural areas had approached 86 versus fallen behind their peers in high-income countries, where there was little difference in rural 87 and urban height. In countries such as Bulgaria, Hungary and Romania, urban children and 88 89 adolescents' height approached that of high-income countries, whereas rural children and adolescents still lagged behind, leading to a relatively large gap. In much of sub-Saharan Africa 90 and south Asia, the height of both urban and rural children and adolescents lagged behind their 91 peers in high-income countries, such that the urban-rural gap was relatively small. In a third group 92 93 of low- or middle-income countries that included Indonesia, Vietnam, Panama, Peru, DR Congo and Rwanda, urban children were still shorter than in high-income countries, while rural children 94 lagged so far behind that the urban-rural gap became large. 95

96

97 By 2020, the urban height advantage in school ages became smaller in much of the world, and, in many high-income western countries and some central European countries it disappeared or 98 reversed into a small (typically <1 cm) urban disadvantage (Fig. 1, Extended Data Fig. 2 and 99 Extended Data Fig. 8). Countries with substantial convergence over these three decades were in 100 101 central and eastern Europe (e.g., Croatia), Latin America and the Caribbean (e.g., Argentina, Brazil, Chile and Paraguay), east and southeast Asia (e.g., Taiwan), and for girls in central Asia 102 (e.g., Kazakhstan and Uzbekistan). The urban height advantage in the named countries declined 103 by ~1-2 cm from 1990 to 2020; the PP of urban-rural height difference having declined ≥0.90 for 104 105 named countries). In many other middle-income countries (e.g., China, Romania and Vietnam), the urban-rural height gaps declined, but children and adolescents living in cities remained taller 106

107 than their rural counterparts (by 1.7-2.5 cm in the named countries for boys and girls; PP of urban children being taller than rural children >0.99). The exception to this convergence was for boys in 108 most countries in sub-Saharan Africa and some countries in Oceania, south Asia, and the region 109 of central Asia, Middle East and north Africa, where the urban height advantage slightly increased 110 111 over these three decades. The largest increase in the urban height advantage occurred in countries in east Africa such as Ethiopia (0.9 cm larger height gap in 2020 than 1990; 95% 112 credible interval (CrI) -0.9 to 2.9 and PP of increase = 0.93), Rwanda (1.0, -0.7 to 3.0 and PP = 113 (0.88), and Uganda (1.1, -0.6 to 3.1 and PP = (0.89). For girls, the urban-rural gap remained largely 114 115 unchanged in many countries in sub-Saharan Africa and south Asia.

116

In middle-income and emerging economies (i.e., newly high-income and industrialised countries) 117 where rural children and adolescents' height converged to those in cities, successive cohorts of 118 119 rural children and adolescents outpaced their urban counterparts in becoming taller and attained what urban children in the same countries had done decades earlier: growing to heights closer to 120 those seen in high-income countries (Fig. 2 and Fig. 3). Successive cohorts of rural children and 121 adolescents in sub-Saharan Africa did not experience the accelerated height gain seen in rural 122 123 areas of middle-income countries; and, in the case of boys, there was no gain, or possibly even a decrease, in height, which in turn led to a persistence or even widening of the urban-rural gap. 124 As a result of these global trends, by 2020, the largest urban-rural height gaps were seen in 125 Andean and central Latin America (e.g., Bolivia, Panama and Peru), by up to 4.7 (4.0-5.5) cm for 126 boys and 3.81 (3.3-4.3) cm for girls, and, especially for boys, in sub-Saharan Africa (e.g., DR 127 Congo, Ethiopia, Mozambique and Rwanda) by up to 4.2 (2.7-5.7) cm. 128

129

The urban-rural BMI difference was relatively small throughout these three decades: <1.4 kg/m² in all countries and years, and <1.1 kg/m² in all but nine countries, for age-standardised mean BMI (Fig. 4, Extended Data Fig. 3 and Extended Data Fig. 9). In 1990, the urban-rural BMI gap

was largest in sub-Saharan Africa (e.g., Ethiopia, Kenya and Malawi, South Africa and Zimbabwe)
and south Asia (e.g., Bangladesh and India), followed by parts of Latin America (e.g., Mexico and
Peru); the urban-rural BMI gap in the two sexes in the named countries ranged from 0.4-1.2 kg/m²
and the PP of urban children having higher BMI than rural children ≥0.89. At that time, girls and/or
boys in rural areas of some of these countries had mean BMI levels that were close to, and in
some ages even below, the thresholds of being underweight (i.e., >1SD below the median of the
WHO reference population).

140

141 From 1990 to 2020, the BMI of successive cohorts of both urban and rural children and adolescents increased in all but a few high-income countries (e.g., Denmark, Italy and Spain) 142 (Fig. 5 and Fig. 6). There was heterogeneity in low- and middle-income countries in how much 143 BMI increased in cities versus rural areas. In the great majority of countries in sub-Saharan Africa 144 145 and south Asia, BMI of successive cohorts of children and adolescents increased more in rural areas than in cities leading to a closing of the urban-rural difference; the reductions in the urban-146 rural BMI gap ranged from 0.1 to 0.65 kg/m² for both girls and boys, and the PP of urban-rural 147 BMI difference declining from 1990 to 2020 ranged from 0.52 to 0.95. In both sub-Saharan Africa 148 149 and south Asia, these changes shifted the mean BMI of rural boys and girls out of the range for being underweight; in many countries in sub-Saharan Africa this shift continued beyond the 150 median of the WHO reference population, and in some cases approached the threshold for being 151 overweight (i.e., >1SD above the median of the WHO reference population). The opposite, i.e., a 152 153 larger rise in urban BMI happened in most other low-and middle-income countries, leading to a slightly larger urban BMI excess in 2020 than in 1990. High-income countries and those in central 154 and eastern Europe experienced a mix of increasing and decreasing urban BMI excess but 155 remained within a relatively small range (-0.3 to 0.6 kg/m² for almost all countries) over the entire 156 period of analysis; at the regional level the urban-rural BMI difference changed by <0.25 kg/m² in 157 158 these regions.

159

The urban height advantage was larger in boys than girls in most countries (Supplementary Figure 3). Urban excess BMI was higher in boys in only about one half of countries; in the other half, mostly in high-income western countries and those in sub-Saharan Africa, urban excess BMI was higher in girls. The urban height advantage was slightly larger at five years of age than at 19 years of age in most low- and middle-income countries, especially for girls, but there was little difference across ages in high-income regions and in central and eastern Europe (Supplementary Figure 4).

Since the introduction of modern sanitation in the 19th century, cities provided substantial 167 nutritional and health advantages in high-income and subsequently low- and middle-income 168 countries¹⁹. Our results show that, in the 21st century, during school ages these advantages have 169 disappeared in high-income countries and diminished in middle-income countries and emerging 170 171 economies in Asia, Latin America and the Caribbean, and parts of Middle East and north Africa. Specifically, in countries of these regions, successive cohorts of school-aged children and 172 adolescents living in cities were outpaced by those in rural areas in terms of height gain but gained 173 slightly more weight, typically in the unhealthy range (Fig. 7). This contrasted with the world's 174 poorest region, sub-Saharan Africa, where the urban height advantage persisted or even 175 expanded while rural mean BMI went beyond remedying underweight and surpassed the median 176 of the WHO reference population in 2020, hence consolidating the urban advantage. South Asia 177 had a mixed pattern of urban versus rural trends from 1990 to 2020, with children and adolescents 178 179 in rural areas gaining both more height and more weight for their height than those in cities. Importantly, our results also show that differences in height and BMI between urban and rural 180 populations within most countries are smaller than the differences across countries, even those 181 in the same region. 182

184 We also found that the urban-rural BMI gap, although dynamic, changed much less than the BMI of either subgroup of the population, and less than commonly assumed when discussing the role 185 of cities in the obesity epidemic^{8,10,12,13,15,16}. Urban-rural BMI differences were especially small in 186 high-income countries, consistent with the evidence from a few countries that diets and 187 188 behaviours are affected more by household socioeconomic status than whether children and adolescents live in cities or rural areas^{29,30}. Urban BMI excess increased slightly more in middle-189 income countries in east and southeast Asia, Latin America and the Caribbean, and Middle East 190 and north Africa, a trend that was the opposite of the convergence in BMI of adults in these same 191 regions²¹. Additional analysis of NCD-RisC data for young adults (20-29 and 30-39 years) showed 192 that the shift from a small divergent trend to convergence of BMI between urban and rural areas 193 happens in young adulthood (Extended Data Fig. 6 and Extended Data Fig. 7), a period during 194 which there is substantial, but variable, weight gain among population subgroups³¹. These shifts 195 196 in trends from adolescence to young adulthood might be a result of changes in diet and energy expenditure that accompany changes in household structure, social and economic roles and the 197 living environment³²⁻³⁴. 198

199

200 Long-term follow up studies have shown that children and adolescents do not achieve their height potential if they do not consume sufficient and diverse nutritious foods, or if they are exposed to 201 repeated or persistent infections which result in loss of nutrients². Studies with data on household 202 socioeconomic and environmental variables have indicated that these physiological determinants 203 of height are themselves affected by income, quality of the living environment, and access to 204 healthcare in rural as well as urban areas³⁵. This evidence indicates that the relatively small urban-205 rural height differentials in high-income countries may be because of a greater abundance of 206 nutritious foods, including some fortified foods, better healthcare, and greater ability to finance 207 208 programmes that promote healthy growth in countries with greater per-capita income and better infrastructure. Variations across these countries in the urban-rural height gap within this small 209

210 range may be due to extent of socioeconomic inequalities and poverty, differences in the 211 availability and cost of nutritious foods between cities and rural areas, and whether there are specific programmes (e.g., food assistance or school food programmes) that improve nutrition of 212 disadvantaged groups^{30,36,37}. The more striking changes in height in urban versus rural areas took 213 214 place in middle-income countries and emerging economies. Case studies in some countries where the heights of rural and urban children and adolescents converged show that the 215 convergence was partly due to using the growth in national income towards programmes and 216 services that helped close gaps in nutrition, sanitation and healthcare between different areas 217 and social groups³⁸⁻⁴⁰. In countries in central and eastern Europe, transition to a market economy 218 and increases in trade may have reduced disparity in access to, and seasonality of, healthy foods 219 between urban and rural areas⁴¹, and partly underlie the convergence of height seen in our 220 results. In contrast, country case studies show that where economic growth was accompanied by 221 large inequalities in income, nutrition and/or services, the urban advantage persisted⁴²⁻⁴⁴. 222

223

The notable exception in the global trends was sub-Saharan Africa, where a stagnation or reversal 224 of height gain in rural areas led to persistence or widening of urban-rural height differences, while 225 the opposite happened for BMI (Fig. 7). Case studies of specific countries have indicated that 226 unfavourable trends in nutrition in rural Africa, where the majority of the world's poorest people 227 live, started from macroeconomic shocks in the late 20th century, and the subsequent agriculture, 228 229 trade and development policies that limited improvements in income and services in rural Africa, 230 which increased urban-rural income inequality, and emphasised agricultural exports over local food security and diversity⁴⁵. These macroeconomic factors in turn led to less diverse diets, with 231 higher caloric intake rather than shifting to protein- and nutrient-rich foods (e.g., animal products, 232 seafood, fruits and vegetables)⁴⁶⁻⁴⁸, while the slow expansion of infrastructure and services in rural 233 234 areas restricted improvements in other determinants of healthy growth such as clean water and sanitation and health care⁴⁹. 235

236

237 A number of other factors may also have had a secondary role in the observed trends in height and BMI and their difference in rural and urban areas: First, weight gain during childhood may 238 reduce the age of puberty onset, which in turn may limit height gain during adolescence^{50,51}. No 239 240 comparable global data currently exist on age at menarche and timing of pubertal growth, even at the national level. Second, rural-to-urban migration and reclassification of previously rural areas 241 to urban as they grow and industrialise may account for some the observed population-level 242 trends, although migration tends to be less common in childhood and adolescence in most 243 244 countries. Finally, improvements in under-five survival among rural children, particularly low birthweight children, may have influenced the height and weight of those who survive beyond five 245 years of age in line with observed trends, noting however that current data on changes in child 246 survival in rural and urban areas in sub-Saharan Africa are limited and inconclusive in terms of 247 whether mortality declined faster in rural or urban areas^{52,53}. 248

249

As attention in global health turns to children and adolescents, there is a need to consider and 250 evaluate how growth and development in these formative ages may be affected both by social 251 252 and economic policies that influence household income and poverty and by programmes that affect nutrition, health services, and urban and rural infrastructure and living environments in rural 253 and urban areas. The need to identify, implement and evaluate policies and programmes that 254 improve growth and development outcomes is particularly relevant as the rise in poverty and the 255 256 cost of food, especially of nutrient-rich foods, as a result of the COVID-19 pandemic and the war in Ukraine, may hinder futher gains or even set back in children and adolesxcents' healthy growth 257 and development. 258

260 **References**

1 Prentice, A. M. et al. Critical windows for nutritional interventions against stunting. American Journal of Clinical Nutrition 97, 911-918, doi:10.3945/ajcn.112.052332 (2013).

2632Tanner, J. M. Growth as a mirror of the condition of society: secular trends and class264distinctions. Acta Paediatr Jpn 29, 96-103, doi:10.1111/j.1442-200x.1987.tb00015.x (1987).

3 Strauss, J. & Thomas, D. Health, Nutrition, and Economic Development. Journal of Economic Literature 36, 766-817 (1998).

2674Nüesch, E. et al. Adult height, coronary heart disease and stroke: a multi-locus Mendelian268randomization meta-analysis. Int J Epidemiol 45, 1927-1937, doi:10.1093/ije/dyv074 (2016).

5 Park, M. H., Falconer, C., Viner, R. M. & Kinra, S. The impact of childhood obesity on morbidity and mortality in adulthood: a systematic review. Obes Rev 13, 985-1000, doi:10.1111/j.1467-789X.2012.01015.x (2012).

Caird, J. et al. Does being overweight impede academic attainment? A systematic review.
Health Education Journal 73, 497-521, doi:10.1177/0017896913489289 (2014).

7 NCD Risk Factor Collaboration (NCD-RisC). Height and body-mass index trajectories of
 school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled
 analysis of 2181 population-based studies with 65 million participants. Lancet 396, 1511-1524,
 doi:10.1016/s0140-6736(20)31859-6 (2020).

8 World Health Organization & U. N. Habitat. Global report on urban health: equitable healthier cities for sustainable development. (World Health Organization, 2016).

280 9 World Health Organization. Healthy environments for healthy children: Key messages for 281 action. Report No. 924159988X, (World Health Organization, Geneva, 2010).

World Health Organization. Report of the commission on ending childhood obesity. (World
 Health Organization, Geneva, 2016).

11 Smith, D. M. & Cummins, S. Obese Cities: How Our Environment Shapes Overweight. Geography Compass 3, 518-535, doi:10.1111/j.1749-8198.2008.00198.x (2009).

12 Fraser, B. Latin America's urbanisation is boosting obesity. Lancet 365, 1995-1996,
 doi:10.1016/s0140-6736(05)66679-2 (2005).

13 Pirgon, Ö. & Aslan, N. The Role of Úrbanization in Childhood Obesity. J Clin Res Pediatr Endocrinol 7, 163-167, doi:10.4274/jcrpe.1984 (2015).

- 290 14 UNICEF. The state of the world's children 2012: children in an urban world. (New York, 2012).
- Kirchengast, S. & Hagmann, D. "Obesity in the City" urbanization, health risks and rising
 obesity rates from the viewpoint of human biology and public health. Human Biology and Public
 Health 2, doi:10.52905/hbph.v2.11 (2021).
- 295 16 Congdon, P. Obesity and Urban Environments. In J Environ Res 16, 296 doi:10.3390/ijerph16030464 (2019).
- 297 17 Gong, P. et al. Urbanisation and health in China. Lancet 379, 843-852, doi:10.1016/S0140-6736(11)61878-3 (2012).
- Liese, A. D., Weis, K. E., Pluto, D., Smith, E. & Lawson, A. Food store types, availability, and cost of foods in a rural environment. Journal of the American Dietetic Association 107, 1916-1923 (2007).
- 19 Krumdiek, C. L. The rural-to-urban malnutrition gradient: a key factor in the pathogenesis of urban slums. JAMA 215, 1652-1654 (1971).

20 Paciorek, C. J., Stevens, G. A., Finucane, M. M. & Ezzati, M. Children's height and weight 305 in rural and urban populations in low-income and middle-income countries: a systematic analysis 306 of population-representative data. Lancet Glob Health 1, e300-e309, doi:10.1016/S2214-307 109X(13)70109-8 (2013).

NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main
 driver of the global obesity epidemic in adults. Nature 569, 260-264, doi:10.1038/s41586-019 1171-x (2019).

Jaacks, L. M., Slining, M. M. & Popkin, B. M. Recent trends in the prevalence of underand overweight among adolescent girls in low- and middle-income countries. Pediatr Obes 10, 428-435, doi:10.1111/ijpo.12000 (2015).

- Wang, Y., Monteiro, C. & Popkin, B. M. Trends of obesity and underweight in older children
 and adolescents in the United States, Brazil, China, and Russia. Am J Clin Nutr 75, 971-977
 (2002).
- Neuman, M., Kawachi, I., Gortmaker, S. & Subramanian, S. V. Urban-rural differences in
 BMI in low- and middle-income countries: the role of socioeconomic status. Am J Clin Nutr 97,
 428-436, doi:10.3945/ajcn.112.045997 (2013).
- 25 World Health Organization & Centre for Health Development. Hidden cities: unmasking and overcoming health inequities in urban settings. Report No. 9241548037, (World Health 322 Organization, Geneva, 2010).
- 223 26 World Health Organization. Population-based approaches to childhood obesity 224 prevention. Report No. 9789241504782, (World Health Organization, Geneva, 2012).
- 27 United Nations Children's Fund (UNICEF). Prevention of overweight and obesity in 226 children and adolescents: UNICEF programming guidance. (UNICEF, New York, 2019).
- 28 de Sa, T. H. et al. Urban design is key to healthy environments for all. Lancet Glob Health 328 10, e786-e787, doi:10.1016/S2214-109X(22)00202-9 (2022).
- 29 Kelly, C., Callaghan, M., Molcho, M., Nic Gabhainn, S. & Alforque Thomas, A. Food 300 environments in and around post-primary schools in Ireland: Associations with youth dietary 311 habits. Appetite 132, 182-189, doi:10.1016/j.appet.2018.08.021 (2019).
- 332 30 Conrad, D. & Capewell, S. Associations between deprivation and rates of childhood 333 overweight and obesity in England, 2007–2010: an ecological study. BMJ Open 2, e000463, 334 doi:10.1136/bmjopen-2011-000463 (2012).
- 335 31 Katsoulis, M. et al. Identifying adults at high-risk for change in weight and BMI in England: 336 a longitudinal, large-scale, population-based cohort study using electronic health records. Lancet 337 Diabetes Endocrinol, 681-694, doi:10.1016/S2213-8587(21)00207-2 (2021).
- Arnett, J. J. Emerging Adulthood: A Theory of Development From the Late Teens Through
 the Twenties. The American psychologist 55, 469-480, doi:10.1037/0003-066X.55.5.469 (2000).
- 340 33 Poobalan, A. S., Aucott, L. S., Clarke, A. & Smith, W. C. S. Diet behaviour among young
 people in transition to adulthood (18-25 year olds): a mixed method study. Health Psychol Behav
 Med 2, 909-928, doi:10.1080/21642850.2014.931232 (2014).
- 343 34 Winpenny, E. M. et al. Changes in diet through adolescence and early adulthood: 344 longitudinal trajectories and association with key life transitions. Int J Behav Nutr Phys Act 15, 86, 345 doi:10.1186/s12966-018-0719-8 (2018).
- 346 35 Smith, L. C., Ruel, M. T. & Ndiaye, A. Why Is Child Malnutrition Lower in Urban Than in 347 Rural Areas? Evidence from 36 Developing Countries. World Development 33, 1285-1305, 348 doi:10.1016/j.worlddev.2005.03.002 (2005).
- 349 36 Lundborg, P., Rooth, D.-O. & Alex-Petersen, J. Long-Term Effects of Childhood Nutrition: 350 Evidence from a School Lunch Reform. The Review of Economic Studies 89, 876-908, 351 doi:10.1093/restud/rdab028 (2022).
- 352 37 Graça, P., Gregório, M. J. & Freitas, M. G. A Decade of Food and Nutrition Policy in 353 Portugal (2010–2020). Portuguese Journal of Public Health 38, 94-118, doi:10.1159/000510566 354 (2020).
- 355 38 Winichagoon, P. Thailand nutrition in transition: situation and challenges of maternal and 356 child nutrition. Asia Pac J Clin Nutr 22, 6-15, doi:10.6133/apjcn.2013.22.1.17 (2013).

357 39 Paes-Sousa, R. & Vaitsman, J. The Zero Hunger and Brazil without Extreme Poverty 358 programs: a step forward in Brazilian social protection policy. Cien Saude Colet 19, 4351-4360, 359 doi:10.1590/1413-812320141911.08812014 (2014).

40 Núñez, J. & Pérez, G. The Escape from Malnutrition of Chilean Boys and Girls: Height for-Age Z Scores in Late XIX and XX Centuries. International Journal of Environmental Research
 and Public Health 18, 10436 (2021).

41 Herrmann, R., Möser, A. & Weber, S. A. in Zentrum für Internationale Entwicklungs- und
Umweltforschung (ZEU) (Discussion Paper, Justus-Liebig-Universität Gießen, Giessen, 2009).
42 Thang, N. M. & Popkin, B. Child malnutrition in Vietnam and its transition in an era of
economic growth. J Hum Nutr Diet 16, 233-244, doi:10.1046/j.1365-277x.2003.00449.x (2003).

Subramanyam, M. A., Kawachi, I., Berkman, L. F. & Subramanian, S. V. Socioeconomic
 inequalities in childhood undernutrition in India: analyzing trends between 1992 and 2005. PloS
 one 5, e11392, doi:https://dx.doi.org/10.1371/journal.pone.0011392 (2010).

Jingzhong, Y. & Lu, P. Differentiated childhoods: impacts of rural labor migration on left-370 44 behind children in China. The Journal of Peasant Studies 355-377, 371 38. doi:10.1080/03066150.2011.559012 (2011). 372

45 Sundberg, S. Agriculture, poverty and growth in Africa: Linkages and policy challenges.
Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources
4, doi:10.1079/PAVSNNR20094005 (2009).

46 Bentham, J. et al. Multidimensional characterization of global food supply from 1961 to 2013. Nature Food 1, 70-75, doi:10.1038/s43016-019-0012-2 (2020).

Micha, R. et al. Global, regional and national consumption of major food groups in 1990
and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ
Open 5, e008705, doi:10.1136/bmjopen-2015-008705 (2015).

48 Fraval, S. et al. Food Access Deficiencies in sub-Saharan Africa: Prevalence and Implications for Agricultural Interventions. Frontiers in Sustainable Food Systems 3, doi:10.3389/fsufs.2019.00104 (2019).

49 Thomson, M., Kentikelenis, A. & Stubbs, T. Structural adjustment programmes adversely
 affect vulnerable populations: a systematic-narrative review of their effect on child and maternal
 health. Public Health Reviews 38, 13, doi:10.1186/s40985-017-0059-2 (2017).

50 Frisch, R. E. & Revelle, R. Height and Weight at Menarche and a Hypothesis of Critical Body Weights and Adolescent Events. Science 169, 397-399, doi:doi:10.1126/science.169.3943.397 (1970).

Holmgren, A. et al. Pubertal height gain is inversely related to peak BMI in childhood.
 Pediatric Research 81, 448-454, doi:10.1038/pr.2016.253 (2017).

Alhassan, J. A. K., Adeyinka, D. A. & Olakunde, B. O. Equity dimensions of the decline in
 under-five mortality in Ghana: a joinpoint regression analysis. Tropical Medicine & International
 Health 25, 732-739, doi:https://doi.org/10.1111/tmi.13391 (2020).

395 53 Wolde, K. S. & Bacha, R. H. Trend and correlates of under-5 mortality in Ethiopia: A 396 multilevel model comparison of 2000-2016 EDHS data. SAGE Open Med 10, 397 20503121221100608, doi:10.1177/20503121221100608 (2022).

398 Methods

We estimated trends in mean height and BMI for children aged 5-19 years from 1990 to 2020 by rural and urban place of residence for 200 countries and territories listed in Supplementary Table 1. We pooled, in a Bayesian meta-regression, repeated cross-sectional population-based data on height and BMI. Our results represent estimates of height and BMI for children and adolescents of the same age over time, i.e., for successive cohorts, in each country's rural and urban settings.

405 **Data sources**

406 We used a database on cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration (NCD-RisC). Data were obtained from publicly available multi-country 407 and national measurement surveys (e.g., Demographic and Health Surveys (DHS), WHO-408 STEPwise approach to Surveillance (STEPS) surveys, and those identified via the Inter-University 409 410 Consortium for Political and Social Research, UK Data Service, and European Health Interview & Health Examination Surveys Database). With the help of World Health Organization (WHO) 411 and its regional and country offices as well as World Heart Federation, we identified and accessed 412 population-based survey data from national health and statistical agencies. We searched and 413 reviewed published studies as detailed previously⁵⁴ and invited eligible studies to join NCD-RisC, 414 as did we with data holders from earlier pooled analyses of cardiometabolic risk factors⁵⁵⁻⁵⁸. The 415 NCD-RisC database is continuously updated through all the above routes and periodic requests 416 to NCD-RisC members to suggest additional sources in their countries. 417

418

We carefully checked that each data source met our inclusion criteria, as listed below. Potential duplicate data sources were first identified by comparing studies from the same country and year, followed by checking with NCD-RisC members that had provided data about whether the sources from the same country and year were the same or distinct. If two sources were confirmed as duplicates, one was discarded. All NCD-RisC members were also periodically asked to review

the list of sources from their country, to verify that the included data meet the inclusion criteriaand are not duplicates.

426

For each data source, we recorded the study population, sampling approach, years of 427 428 measurement, and measurement methods. Only data that were representative of the population were included. All data sources were assessed in terms of whether they covered the whole 429 country, multiple subnational regions (i.e., one or more subnational regions/provinces/states, 430 more than three cities or more than five rural communities), or one or a small number of 431 432 communities (limited geographical scope not meeting above national or subnational criteria), and whether participants in rural, urban or both areas were included. As stated in the sections on 433 statistical model, these study-level attributes were used in the Bayesian hierarchical model to 434 estimate mean height and BMI by country, year, sex, age and place of residence using all 435 available data while taking into account differences in the populations from which different studies 436 had sampled. All submitted data were checked by at least two independent persons. Questions 437 and clarifications were discussed with NCD-RisC members and resolved before data were 438 incorporated in the database. 439

440

Anonymised individual data from the studies in the NCD-RisC database were reanalysed 441 according to a common protocol. We calculated mean height and mean BMI, and the associated 442 standard errors, by sex, single year of age from five to 19 years, and rural or urban place of 443 444 residence. Additionally, for analysis of height, participants aged 20-30 years were included, assigned to their corresponding birth cohort, because mean height in these ages would be at least 445 that when they were aged 19 years, given that the decline of height with age begins in the third 446 and fourth decades of life⁵⁹. All analyses incorporated sample weights and complex survey 447 448 design, when applicable, in calculating summary statistics. For studies that had used simple random sampling, we calculated mean as average of all individuals within the group and their 449

associated standard errors (standard deviation divided by the square root of sample size); for 450 studies that had used multistage (stratified) sampling, we accounted for survey design features 451 including clusters, strata and sample weights, to weight each observation by the inverse sampling 452 probability and estimate standard error via Taylor series linearisation, as implemented in the R 453 'survey' package⁶⁰. Computer code was provided to NCD-RisC members who requested 454 assistance. For surveys without information on place of residence, we calculated age- and sex-455 stratified summary statistics for the entire sample, which represented the population-weighted 456 sum of rural and urban means; data on the share of population in urban versus rural areas were 457 from the United Nations Population Division⁶¹. 458

459

Additionally, summary statistics for nationally representative data from sources that were identified but not accessed via the above routes were extracted from published reports. Data were also extracted for two STEPS surveys that were not publicly available. We also included data from a previous global-data pooling study⁵⁸, when not accessed through the above routes.

464

465 **Data inclusion and exclusion**

- Data sources were included in the NCD-RisC height and weight database if:
- measured data on height and weight were available;
- study participants were five years of age and older;
- data were collected using a probabilistic sampling method with a defined sampling frame;
- data were from population samples at the national, subnational, or community level as defined
 above; and
- data were from the countries and territories listed in Supplementary Table 1.

We excluded all data sources that were solely based on self-reported weight and height without a measurement component because these data are subject to biases that vary by geography, time, age, sex and socioeconomic characteristics⁶²⁻⁶⁴. Due to these variations, approaches to correcting self-reported data may leave residual bias. We also excluded data sources on population subgroups whose anthropometric status may differ systematically from the general population, including:

- studies that had included or excluded people based on their health status or cardiovascular
 risk;
- studies whose participants were only ethnic minorities;

specific educational, occupational, or socioeconomic subgroups, with the exception noted
 below;

• those recruited through health facilities, with the exception noted below; and

females aged 15-19 years in surveys which sampled only ever-married women or measured
 height and weight only among mothers.

488

We used school-based data in countries and age-sex groups with school enrolment of 70% or higher. We used data whose sampling frame was health insurance schemes in countries where at least 80% of the population were insured. Finally, we used data collected through general practice and primary care systems in high-income and central European countries with universal insurance, because contact with the primary care systems tends to be as good as or better than response rates for population-based surveys.

495

We excluded <0.01% of all participants whose age was <18 years and whose data were not reported by single year of age because height and weight may have non-linear age associations in these ages, especially during growth spurts. We excluded BMI data for females who were

pregnant at the time of measurement (<0.01% of all participants). We excluded <0.2% of all participants who had recorded height outside the range <60 cm or >180 cm for ages <10 years; <80 cm or >200 cm for ages 10-14 years; <100 cm or >250 cm for ages ≥15 years, recorded weight outside the range <5 kg or >90 kg for age <10 years; <8 kg or >150 kg for ages 10-14 years; <12 kg or >300 kg for ages ≥15 years, or recorded BMI outside the range <6 kg/m² or >40 kg/m² for ages < 10 years; <8 kg/m² or >60 kg/m² for ages 10-14 years; <10 kg/m² or >80 kg/m² for ages ≥15 years.

506

507 **Conversion of BMI prevalence metrics to mean BMI**

In 0.5% of our data points mostly extracted from published reports or from a previous pooling analysis⁵⁸, mean BMI was not reported, but data were available for the prevalence of one or more BMI categories, for example, BMI \geq 30 kg/m². In order to use these data, we used previously validated conversion regressions⁶⁵ to estimate the missing primary outcome from the available BMI prevalence metric(s). Additional details on regression model specifications along with the regression coefficients are reported on https://github.com/NCD-RisC/ncdrisc-methods/.

514

515 Statistical model overview

We used a Bayesian hierarchical meta-regression model to estimate mean height and BMI by 516 country, year, sex, age and place of residence using the aforementioned data. For presentation, 517 we summarised the 15 age-specific estimates, for single years of age from 5 through 19, through 518 519 age standardisation which puts each country-year's child and adolescent population on the same age distribution, and hence allows comparisons to be made over time and across countries. We 520 generated age-standardised estimates by taking weighted means of age-specific estimates, using 521 age weights from the WHO standard population⁶⁶. We also show results, graphically and 522 numerically, for index ages of 5, 10, 15 and 19 years in Extended Data and Supplementary 523 Materials. 524

525

526 The statistical model is described in detail in statistical papers^{67,68}, related substantive papers^{7,20,21,55-58,65,69} and in the section below on model specification. In summary, the model had 527 a hierarchical structure in which estimates for each country and year were informed by its own 528 529 data, if available, and by data from other years in the same country and from other countries, especially those in the same region and super-region, with data for similar time periods. The 530 extent to which estimates for each country-year were influenced by data from other years and 531 other countries depended on whether the country had data, the sample size of the data, whether 532 533 they were national, and the within-country and within-region variability of the available data. For the purpose of hierarchical analysis, countries were organised into 21 regions, mostly based on 534 geography and national income (Supplementary Table 1). Regions were in turn organised into 535 nine super-regions. 536

537

We used observation year, i.e., the year in which data were collected, as the time-scale for the 538 analysis of BMI and birth year as the time scale for the analysis of height, consistent with previous 539 analyses^{7,65,70}. Time trends were modelled through a combination of a linear term, to capture 540 gradual long-term change, and a second-order random walk, which allows for non-linear trends⁷¹, 541 both modelled hierarchically The age associations of height and BMI were modelled, using cubic 542 splines, to allow non-linear changes over age, including periods of rapid as well as slow rise. 543 Periods of rapid rise represent adolescent growth spurts, which occur earlier in girls than boys⁷²⁻ 544 ⁷⁴, was reflected in placement of spline knots for boys and girls, respectively, as detailed in the 545 section on model specification. Spline coefficients were allowed to vary across countries, based 546 on their own data as well as in a hierarchical structure, as previously described⁶⁹. 547

548

549 The model also accounted for the possibility that height or BMI in subnational and community 550 samples might differ systematically from nationally representative samples and have larger

variation than in national studies. These features were accounted for through the inclusion of fixed-effect and random-effect terms for subnational and community data as detailed in the model specification section below. The fixed effects accounted for systematic differences between subnational or community studies and national studies. The inclusion of random effects allowed national data to have greater influence on the estimates than subnational or community data with similar sample sizes, because the subnational and community data have additional variance from the random effect terms. Both were estimated empirically as a part of model fitting.

558

Following the approach of previous papers^{20,21,67}, the model included parameters representing the 559 urban-rural height or BMI difference, which is empirically estimated and allowed to vary by 560 country, year, and age. We further expanded the model to allow urban-rural difference in height 561 or BMI to vary by age, as height or weight with age may vary between rural versus urban children. 562 If data for a country-year-age group contained mixed urban and rural children, but were not 563 stratified by place of residence (21% of all data sources), the estimated BMI difference was 564 informed by stratified data from other age groups, years and countries, especially those in the 565 same region with data from similar time periods and/or ages. 566

567

568 Statistical model specification

As stated earlier, for each data source, we calculated mean height and BMI, together with corresponding standard errors, stratified by sex, age and rural or urban place of residence. For sources that did not stratify the sample on the place of residence, we obtained age-and-sexstratified data. Each study contributed up to 30 mean BMI data points or 32 mean height data points for each sex with the exact number depending how many age groups were represented in the study, and whether or not the study provided data stratified on urban and rural place of residence. The likelihood for an observation at urbanicity level *s* (urban-only, rural-only or mixed;

referred to as stratum hereinafter) and age group h, with age *z*, from study *i*, carried out in country *j* at time *t* is:

578
$$y_{s,h,i} \sim N(a_{j[i]} + b_{j[i]}t_i + u_{j[i],t_i} + \gamma_i(z_h) + X_i\beta + e_i + I_{s,i}[p_{j[i]} + q_{j[i]}t_i + r_{j[i]}z_h + d_i], SD_{s,h,i}^2 / n_{s,h,i} + \tau_i^2)$$

579

where the country-specific intercept and linear time slope from the j^{th} country ($j = 1 \dots J$, where J 580 = 200 which is the total number of countries in our analysis) are denoted a_i and b_i , respectively. 581 We describe the hierarchical model used for the a's and b's in Linear components of country time 582 *trends* section. Letting T = 31 be the total number of years from 1990 to 2020, the *T*-vector u_i 583 584 captures smooth non-linear change over time in country *j*, as described in *Non-linear change* section. The age effects of the h^{th} age group (with age z) in study i are denoted by γ_i ; we describe 585 the age model in Age model section. The matrix X contains terms describing whether studies 586 587 were representative at the national, sub-national or community level. In addition, a random effect, e_i , is estimated for each study, described in Study-level term and study-specific random effects 588 section. 589

590

591 *Linear components of country time trends*

The model had a hierarchical structure: studies were nested in countries, which were nested in regions (indexed by *k*), which were nested in super-regions (indexed by *l*), which were, of course, all nested in the globe (see Supplementary Table 1 for list of countries in each region, and regions in each super-region). This structure allowed the model to share information across units to a greater degree when data were non-existent or weakly informative (e.g., have a small sample size or were not nationally representative), and to a lesser extent in data-rich countries and regions⁷⁵.

- The *a* and *b* terms are country-specific linear intercepts and time slopes with terms at each level of the hierarchy, denoted by the superscripts *c*, *r*, *s*, and *g*, respectively:
- 602 $a_j = a_j^c + a_{k[j]}^r + a_{l[k]}^s + a^g$
- 603 $b_j = b_j^c + b_{k[j]}^r + b_{l[k]}^s + b^g$
- $a_i^x \sim N(0, \kappa_a^x)$
- 605 $b_j^x \sim N(0, \kappa_b^x)$ (where $x = \{c, r, s\}$)
- 606

607 The κ terms are each assigned a flat prior on the standard deviation scale⁷⁶. We also assigned 608 flat priors to a^g and b^g .

609

610 Non-linear change

Mean BMI or height may change non-linearly over time^{7,54,58,65,70}. We captured smooth non-linear change in time in urban and rural strata of country *j* using the vector u_j . Just as a_j and b_j are each defined as the sum of country, region, super-region, and global components, we defined:

614
$$u_j = u_j^c + u_{k[j]}^r + u_{l[k]}^s + u^s$$

615

In order to allow the model to differentiate between the degrees of non-linearity that exist at the country, region, super-region, and global levels, we assigned each of the *u*'s four components a Gaussian autoregressive prior as in Breslow and Clayton⁷⁷ and Rue and Held⁷¹. In particular, the *T*-vectors u_j^c (j = 1 ... J), u_k^r (k = 1 ... K), u_l^s (l = 1 ... L), and u^g each have a normal prior with mean zero and precision $\lambda_c P$, $\lambda_r P$, $\lambda_s P$, and $\lambda_g P$ respectively, where the scaled precision matrix *P* in the Gaussian autoregressive prior penalizes first and second differences:

$$P = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & \cdots & 0 \\ -2 & 5 & -4 & 1 & 0 & \cdots & 0 \\ 1 & -4 & 6 & -4 & 1 & \cdots & 0 \\ 0 & 1 & -4 & 6 & -4 & \cdots & 0 \\ 0 & 0 & 1 & -4 & 6 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

622

P is multiplied by the estimated precision parameters λ_c , λ_r , λ_s , and λ_a , thus up-weighting or 623 624 down-weighting the strength of its penalties and ultimately determining the degree of smoothing at each level. For each of the four precision parameters, we used a truncated flat prior on the 625 standard deviation scale $(1/\sqrt{\lambda})$ as recommended by Gelman⁷⁶. We truncated these priors such 626 that $\log \lambda \leq 20$ for each of the four λ 's. This upper bound is enforced as a computational 627 convenience: models with log λ >20 are treated as equivalent to a model with log λ = 20 as they 628 essentially have no extra-linear variability in time. In practice, this upper bound had little effect on 629 the parameter estimates. Furthermore, we order the λ 's a priori: $\lambda_c < \lambda_r < \lambda_s < \lambda_q$. This prior 630 631 constraint conveys the natural expectation that, for example, the global BMI trend has less extra-632 linear variability than the trend of any given region.

633

The matrix *P* has rank T - 2, corresponding to a flat, improper prior on the mean and the slope of the u_j^c 's, the u_k^r 's, the u_l^s 's and of u^g , and is not invertible⁷⁸ Thus, we have a proper prior in a reduced-dimension space as discussed in Rue and Held⁷¹, with the prior expressed as:

637

$$P(u_j^c|\lambda_c) \propto \lambda_c^{\frac{T-2}{2}} \exp\left\{-\frac{\lambda_c}{2}u_j^{c'}Pu_j^c\right\}$$

638

Note that if u_j^c had a non-zero mean, this would introduce non-identifiability with respect to a_j^c . By the same token, b_j^c would not be identified if u_j had a non-zero time slope, and similarly for the other means and slopes. Thus, in order to achieve identifiability of the *a*'s, *b*'s, and *u*'s, we constrained the mean and slope of u^g and of each u^s , u^r , and u^c to be zero. Enforcing orthogonality between the linear and non-linear portions of the time trends means that each can be interpreted independently.

645

In cases where we have observations for at least two different time points, this improper prior will not lead to an improper posterior since the data will provide information about the mean and slope. However, to enforce the desired orthogonality between the linear and non-linear portions of the model, we constrained the mean and slope of the u_j^c 's, u_k^r 's, u_l^s 's, and of u^g to be zero, using the approach described by Rue and Held⁷¹.

651

For the six countries with no height data, and seven countries with no BMI data, we took the 652 Moore-Penrose pseudoinverse of P^{79} , setting to infinity those eigenvalues that correspond to the 653 non-identifiability. This effectively constrains the non-identified portions of the model to zero, as 654 the corresponding variances are set to zero⁷⁷; in this case the Rue and Held correction⁷¹ is not 655 needed. An intermediate case occurs when data are observed for only one time point in a country. 656 In this case, the full conditional precision has rank T-1 because the mean but not the linear 657 trend of u_i^c is identified by the data. We thus constrained the linear trend of u_i^c to zero by taking 658 the generalised inverse of the full conditional precision. We then constrained the mean of u_i^c to 659 zero using the one-dimensional version of the correction described in Rue and Held⁷¹. 660

662 Age model

To capture sex-specific patterns of growth, especially adolescent growth spurts, we modelled age using cubic splines. The number and position of splines' knots were selected based on a combination of physiological and statistical considerations, as described in a national level analysis⁷. For age group *h* with age *z*, in study *i*, the age effect for height and BMI is given, respectively, by:

$$668 \qquad \gamma_{i}(z_{h}) = \gamma_{1i}z_{h} + \gamma_{2i}z_{h}^{2} + \gamma_{3i}z_{h}^{3} + \gamma_{4i}(z_{h} - k_{1})_{+}^{3} + \gamma_{5i}(z_{h} - k_{2})_{+}^{3} + \gamma_{6i}(z_{h} - k_{3})_{+}^{3} + \gamma_{7i}(z_{h} - k_{4})_{+}^{3}$$
 (height)

$$669 \qquad \gamma_{i}(z_{h}) = \gamma_{1i}z_{h} + \gamma_{2i}z_{h}^{2} + \gamma_{3i}z_{h}^{3} + \gamma_{4i}(z_{h} - k_{1})_{+}^{3} + \gamma_{5i}(z_{h} - k_{2})_{+}^{3}$$
 (BMI)

670

For height, four spline knots were placed at ages $\{k_1, k_2, k_3, k_4\} = \{8, 10, 12, 14\}$ for girls and at ages $\{k_1, k_2, k_3, k_4\} = \{10, 12, 14, 16\}$ for boys. For BMI, we used two spline knots (at ages 10 and 15 years) because, at the population level, changes in BMI with age are smoother than those in height^{7,72,73}. Each of the spline coefficients was allowed to vary across countries, with a hierarchical structure as described in a previous paper⁶⁹, using the equation below, where ψ is the global intercent and c, r, s are the country, region and super-region random intercepts, respectively, The age effect coefficients ($\gamma_{k,i}$) for each age group *h*, with age *z*, are given by:

- 678 $\gamma_{k,i} = \psi_k + c_{k,j[i]} + r_{k,l[i]} + s_{k,m[i]}$
- $c_{k,j} \sim N(0, \sigma_{k,c}^2)$

- $s_{k,l} \sim N(0, \sigma_{k,s}^2)$
- 682 A flat improper prior was placed of each of the σ_k 's.
- 683

684 Study-level term and study-specific random effects

685 Mean height or BMI from individual studies may deviate from the true country-year mean due to 686 factors associated with sampling, response or measurement. We used a study-level term to help

account for potential systematic differences associated with data sources that are representative 687 of sub-national and community populations. Our model thus included time-varying offsets 688 (referred to as fixed effects above) for sub-national and community data in the term $X_i\beta$: 689

+

690
$$\boldsymbol{X}_{i}\boldsymbol{\beta} = \beta_{1}I\left\{X_{j[i],t[i]}^{cvrg} = \text{subnational}\right\} + \beta_{2}I\left\{X_{j[i],t[i]}^{cvrg} = \text{subnational}\right\}t_{i}$$

$$\beta_3 I \left\{ X_{j[i],t[i]}^{cvrg} = \text{community} \right\} + \beta_4 I \left\{ X_{j[i],t[i]}^{cvrg} = \text{community} \right\} t_i$$

where $X_{j[i],t[i]}^{cvrg}$ is the indicator for whether the coverage of study *i*, in country *j* and year *t*, is sub-692 national or community. 693

694

Even after accounting for sampling variability, national studies may still not reflect the country's 695 true mean BMI level with perfect accuracy, and sub-national and community studies have even 696 697 larger variability. In study *i*, the study-specific random effect e_i allows all age groups from the same study to have an unusually high or an unusually low mean after conditioning on the other 698 terms in the model. Each e_i is assigned a normal prior with variance depending on whether study 699 700 *i* is representative at the national, sub-national or community level. Random effects from national studies were constrained to have smaller variance (v_n) than random effects of sub-national 701 702 studies (v_s), which were in turn constrained to have smaller variance than community studies (v_c). 703 To make country-level predictions, we set $e_i = 0$, thus not including random effects due to imperfections in study design and to within-country variability of BMI means. 704

705

706 Urban and rural strata

To model mean height and BMI by urban and rural places of residence, the model included offsets 707 708 for the two strata. The offsets were captured by country-specific intercept, linear time and age effects, using a centred indicator term $(I_{s,i})$: 709

710
$$I_{s,i}[p_{j[i]} + q_{j[i]}t_i + r_{j[i]}z_h + d_i] \quad \text{(where, } I_{s,i} = -1 + 2X_{s,i}^{urb} \text{)}$$

711 with

712
$$X_{s,i}^{urb} = \begin{cases} 1, & \text{if stratum } s \text{ contains only urban individuals} \\ 0, & \text{if stratum } s \text{ contains only rural individuals} \\ X_{j[i],t[i]}^{urb} & \text{if stratum } s \text{ contains a mixture of urban and rural individuals} \end{cases}$$

In other words, for data not stratified by place of residence, the model treats the unstratified mean height or BMI as equivalent to the weighted sum of the (unobserved) urban sample mean BMI and rural sample mean BMI, with the weights based on the proportion of the study country's population living in urban areas in the year of the survey $(X_{j[i],t[i]}^{urb})$.

717

The intercept (p) and slope (q) terms capture the country-to-country variation in the magnitude of the height or BMI difference between urban and rural populations and how the difference changes over time. The slope (r) captures the country-to-country variation in the BMI or height difference between urban and rural populations across age groups. These were specified with the same geographical hierarchy as the country-specific intercepts (a) and slopes (b):

723 $p_j = p_j^c + p_{k[j]}^r + p_{l[k]}^s + p^g,$

724
$$q_j = q_j^c + q_{k[j]}^r + q_{l[k]}^s + q^g$$

725
$$r = r_j^c + r_{k[j]}^r + r_{l[k]}^s + r^g,$$

 $p_j^x \sim N(0, \kappa_p^x),$

727
$$q_i^x \sim N(0, \kappa_q^x)$$

728 $r_j^x \sim N(0, \kappa_r^x)$ (where, $x = \{c, r, s\}$)

The study random effect term d_i incorporates deviations from the country-level urban-rural difference in each study and is analogous to e_i .

731

732 Residual age-by-study variability

The age patterns across communities within a given country may differ from their country's overall age pattern. This within-study variability cannot be captured by the e's, which are equal across age-specific observations in each study, so we include an additional variance component for each

- study, τ_i^2 . We again assume that there is less residual variability in national studies than in subnational and community-level studies, with $\tau_n^2 < \tau_s^2 < \tau_c^2$.
- 738

739 Model implementation

All analyses were done separately by sex because age, geographical and temporal patterns of 740 height and BMI differ between girls and boys^{7,65}. We fitted the statistical model using Markov chain 741 742 Monte Carlo (MCMC). We started 35 parallel MCMC from randomly-generated over-dispersed starting values. For computational efficiency, each chain was run for a total of 75,000 iterations. 743 All chains converged to the same target distribution within this number, but with the over-744 dispersed initial values, the length of burn-in required to converge to the target distribution varied. 745 After the runs were completed, we used trace plots to monitor convergence and select chains that 746 had completed burn-in within 35,000 iterations. This resulted in 16 chains for boys and 17 for girls 747 for BMI, and 14 chains for boys and 16 for girls for height. Within each chain, post-burn-in 748 iterations were thinned by keeping every 10th iteration, which were then combined for all chains 749 750 and further thinned to a final set of 5,000 draws of the model parameter estimates. We used the posterior distribution of the model parameters to obtain the posterior distributions of our outcomes: 751 mean urban and rural height and BMI, and the urban-rural difference in mean height and BMI. 752 Posterior estimates were made for by one-year age groups from five to 19 years, as well as for 753 age-standardised outcomes, by year. The reported credible intervals represent the 2.5th and the 754 97.5th percentiles of the posterior distributions. We also report the posterior standard deviation of 755 estimates, and posterior probability that the estimated change in height or BMI in rural or urban 756 areas, and in the estimated urban-rural height or BMI difference over time, represents a true 757 758 increase or decrease.

759

Convergence was confirmed for the country-sex specific posterior outcomes – namely mean urban height and BMI, mean rural height and BMI and the urban-rural difference in mean height

and BMI – for reporting ages (5, 10, 15, 19 years and age-standardised) and years (1990 and
2020) using the R-hat diagnostic^{80,81}. For height, the 2.5th to 97.5th percentiles of the R-hats for
the reporting ages and years were 0.999-1.010 for girls and 0.999-1.004 for boys. For BMI, the
2.5th to 97.5th percentiles of the R-hats were 0.999-1.004 for girls and 0.999-1.005 for boys.

766

We applied the pool-adjacent-violators algorithm, a monotonic regression that uses an iterative algorithm based on least squares to fit a free-form line to a sequence of observations such that the fitted line is non-decreasing^{82,83}, on the posterior height estimates to ensure that each birth cohort's height increased monotonically with age. In practice, this had little effect on the results, with height at age 19 years adjusted by an average 0.26 cm or less for both boys and girls. All analyses were conducting using the statistical software R (version 4.1.2)⁸⁴.

773

774

775 Strengths and limitations

An important strength of our study is its novel scope of presenting consistent and comparable 776 estimates of urban and rural height and BMI among school-aged children and adolescents, which 777 778 is essential to formulate and evaluate policies that aim to improve health in these formative ages. We used an unprecedented amount of population-based data from 194 countries and territories 779 covering ~99% of the world's population. We maintained a high level of data guality and 780 representativeness through repeated checks of study characteristics against our inclusion and 781 782 exclusion criteria, and did not use any self-reported data to avoid bias in height and weight. Data were analysed according to a consistent protocol, and the characteristics and quality of data from 783 each country were rigorously verified through repeated checks by NCD-RisC members. We used 784 a statistical model that used all available data and took into account the epidemiological features 785 786 of height and BMI by using non-linear time trends and age associations. The model used the

available information on the urban-rural difference in height and BMI and estimated the age- and
 time-varying urban-rural difference for all countries hierarchically.

789

Despite our extensive efforts to identify and access data, some countries and regions had fewer 790 791 data, especially those in the Caribbean and Polynesia, Micronesia, and sub-Saharan Africa. Of the studies used, fewer than half had data for children aged 5-9 years compared with nearly 90% 792 with data for children and adolescents aged 10-19 years, which increases the uncertainty of 793 findings. The scarcity of data is reflected in the larger uncertainty of our estimates for these 794 795 countries and regions, and younger age groups. This reflects the need to systematically include school-aged children in both health and nutrition surveys, and especially in countries where 796 school enrolment is high, to use schools as a platform for monitoring growth and developmental 797 outcomes for entire national populations and key subgroups such as those in rural and urban 798 799 areas. Though urban and rural classifications are commonly based on national statistical offices definitions, classification of cities and rural areas may, appropriately, vary by country due to their 800 demographic characteristics (e.g., population size or density), economic activity, administrative 801 structures, infrastructure and environment. Similarly, urbanisation takes place through a variety 802 803 of mechanisms such as changes in fertility in rural and urban areas, migration, and reclassification of previously rural areas to urban as they grow and industrialise. Each of these mechanisms may 804 have different implications for nutrition and physical activity, and hence height and/or BMI, and 805 should be a subject of studies that follow individual participants and changes in their place of 806 807 residence. Finally, there is variation in growth and development of children within rural or urban areas, based on household socioeconomic status and community characteristics that affect 808 access to and the quality of nutrition, the living environment and healthcare^{35,85,86}. Among these, 809 in some cities, a large number of families live in slums^{19,87}. School-aged children and adolescents 810 811 living in slums have nutrition, environment and healthcare access that is typically worse than other residents of the city, although often better than those in rural areas^{19,87-90}. 812

813

814 **Data availability**

Estimates of mean BMI and height by country, year, sex, single year of age as well as agestandardised, and place of residence (urban and rural) will be available from www.ncdrisc.org in machine-readable numerical format and as visualisations upon publication of the paper. Input data from publicly available sources can also be downloaded from <u>www.ncdrisc.org</u> and Zenodo (https://doi.org/10.5281/zenodo.7355602) upon publication of the paper. For other data sources, contact information for data providers can be obtained from <u>www.ncdrisc.org</u> and Zenodo (https://doi.org/10.5281/zenodo.7355602).

822

823 Code availability

The computer code for the Bayesian hierarchical model as well as code to generate tables and 824 825 figures used in this work will be available at www.ncdrisc.org and Zenodo (https://doi.org/10.5281/zenodo.7355602) upon publication of the paper. 826

827 **References**

NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200
countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies
with 19·2 million participants. Lancet 387, 1377-1396, doi:10.1016/s0140-6736(16)30054-x
(2016).

- 55 Danaei, G. et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet 377, 568-577, doi:10.1016/s0140-6736(10)62036-3 (2011).
- 56 Danaei, G. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378, 31-40, doi:10.1016/s0140-6736(11)60679-x (2011).
- 57 Farzadfar, F. et al. National, regional, and global trends in serum total cholesterol since
 1980: systematic analysis of health examination surveys and epidemiological studies with 321
 country-years and 3.0 million participants. Lancet 377, 578-586, doi:10.1016/s01406736(10)62038-7 (2011).
- 58 Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 countryyears and 9.1 million participants. Lancet 377, 557-567, doi:10.1016/s0140-6736(10)62037-5 (2011).
- Cline, M. G., Meredith, K. E., Boyer, J. T. & Burrows, B. Decline of height with age in adults
 in a general population sample: estimating maximum height and distinguishing birth cohort effects
 from actual loss of stature with aging. Hum Biol 61, 415-425 (1989).
- 60 Lumley, T. Analysis of Complex Survey Samples. Journal of Statistical Software 9, 1 19, doi:10.18637/jss.v009.i08 (2004).
- 61 United Nations Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (United Nations, New York, 2019).
- Bayes, A. J., Clarke, P. M. & Lung, T. W. Change in bias in self-reported body mass index
 in Australia between 1995 and 2008 and the evaluation of correction equations. Popul Health
 Metr 9, 53, doi:10.1186/1478-7954-9-53 (2011).
- 63 Connor Gorber, S., Tremblay, M., Moher, D. & Gorber, B. A comparison of direct vs. selfreport measures for assessing height, weight and body mass index: a systematic review. Obes Rev 8, 307-326, doi:10.1111/j.1467-789X.2007.00347.x (2007).
- 64 Ezzati, M., Martin, H., Skjold, S., Vander Hoorn, S. & Murray, C. J. L. Trends in national
 and state-level obesity in the USA after correction for self-report bias: analysis of health surveys.
 J R Soc Med 99, 250-257, doi:10.1177/014107680609900517 (2006).
- 65 NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 populationbased measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627-2642, doi:10.1016/s0140-6736(17)32129-3 (2017).
- 66 Ahmad, O. B. et al. Age standardization of rates: a new WHO standard. Geneva: World Health Organization 9, 1-14 (2001).
- Finucane, M. M., Paciorek, C. J., Stevens, G. A. & Ezzati, M. Semiparametric Bayesian
 Density Estimation With Disparate Data Sources: A Meta-Analysis of Global Childhood
 Undernutrition. Journal of the American Statistical Association 110, 889-901 (2015).
- 68 Finucane, M. M., Paciorek, C. J., Danaei, G. & Ezzati, M. Bayesian Estimation of Population-Level Trends in Measures of Health Status. Statistical Science 29, 18-25 (2014).
- 875 69 NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence 876 and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-

- representative studies with 104 million participants. Lancet 398, 957-980, doi:10.1016/s0140-877 6736(21)01330-1 (2021). 878 879 70 NCD Risk Factor Collaboration (NCD-RisC). A century of trends in adult human height. Elife 5, doi:10.7554/eLife.13410 (2016). 880 Rue, H. v. & Held, L. Gaussian Markov random fields : theory and applications. (Chapman 881 71 882 & Hall/CRC, 2005). 72 Cameron, N. I. Human growth and development. (Academic Press, 2002). 883 de Onis, M. et al. Development of a WHO growth reference for school-aged children and 884 73
- adolescents. Bull World Health Organ 85, 660-667, doi:10.2471/blt.07.043497 (2007).
- 74 Tanner, J. M., Whitehouse, R. H., Marubini, E. & Resele, L. F. The adolescent growth
 spurt of boys and girls of the Harpenden growth study. Ann Hum Biol 3, 109-126,
 doi:10.1080/03014467600001231 (1976).
- 75 Gelman, A. & Jill, J. Data analysis using regression and multilevel/hierarchical models.
 (Cambridge University Press, 2007).
- 76 Gelman, A. Prior distributions for variance parameters in hierarchical models. Bayesian
 892 Anal. 1, 515-533 (2006).
- 893 77 Breslow, N. E. & Clayton, D. G. Approximate Inference in Generalized Linear Mixed 894 Models. Journal of the American Statistical Association 88, 9-25, doi:10.2307/2290687 (1993).
- 895 78 Wood, S. N. Generalized additive models : an introduction with R. (Chapman & Hall/CRC, 2006).
- 897 79 Harville, D. A. Matrix Algebra from a Statistician's Perspective. (Springer-Verlag, 2008).
- 80 Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.-C. Rank-normalization,
 folding, and localization: an improved R for assessing convergence of MCMC (with discussion).
 Bayesian analysis 16, 667-718 (2021).
- 81 Stan Development Team. RStan: the R interface to Stan, < https://mc-stan.org/. > (2022).
 82 Best, M. J. & Chakravarti, N. Active set algorithms for isotonic regression; a unifying
 903 framework. Mathematical Programming 47, 425-439 (1990).
- 83 De Leeuw, J., Hornik, K. & Mair, P. Isotone optimization in R: pool-adjacent-violators algorithm (PAVA) and active set methods. Journal of statistical software 32, 1-24 (2010).
- 84 R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).
- 85 Huang, R., Moudon, A. V., Cook, A. J. & Drewnowski, A. The spatial clustering of obesity:
 does the built environment matter? Journal of Human Nutrition and Dietetics 28, 604-612,
 doi:https://doi.org/10.1111/jhn.12279 (2015).
- 86 Menon, P., Ruel, M. T. & Morris, S. S. Socio-economic Differentials in Child Stunting are
 912 Consistently Larger in Urban than in Rural Areas. Food Nutr Bull 21, 282-289,
 913 doi:10.1177/156482650002100306 (2000).
- 87 Ezeh, A. et al. The history, geography, and sociology of slums and the health problems of 915 people who live in slums. Lancet 389, 547-558, doi:10.1016/s0140-6736(16)31650-6 (2017).
- 916 88 Fink, G., Günther, I. & Hill, K. Slum Residence and Child Health in Developing Countries.
- 917 Demography 51, 1175-1197, doi:10.1007/s13524-014-0302-0 (2014).
- 89 Jonah, C. M. P. & May, J. D. The nexus between urbanization and food insecurity in South
 Africa: does the type of dwelling matter? International Journal of Urban Sustainable Development
 12, 1-13, doi:10.1080/19463138.2019.1666852 (2020).
- 921 90 Habitat for Humanity. Progress Report: Sustainable Development Goal 11 (Target 11.1). 922 (Habitat for Humanity International, New York, 2019).

923 Supplementary information

This file contains Supplementary Tables 1-4, Supplementary Figures 1-8 and Supplementary
 References.

926

927 Acknowledgments

This study was funded by the UK Medical Research Council (grant number MR/V034057/1), Wellcome Trust (Pathways to Equitable Healthy Cities grant 209376/Z/17/Z), AstraZeneca Young Health Programme and the European Commission (STOP project through EU Horizon 2020 research and innovation programme under Grant Agreement 774548). We thank W Dietz, L Jaacks and W Johnson for recommendations of relevant citations.

933

934 Author contributions

AM, BZ, ARM, HB and RS led the data collection and management. AM, BZ, ARM, HB, CJP, JEB and ME developed the statistical method. AM, BZ, ARM and HB coded the statistical method. AM conducted analyses and prepared results. Pooled Analysis and Writing Group contributed to study design, collated data and checked data sources in consultation with the Country and Regional Data Group. Country and Regional Data Group collected and reanalysed data and checked pooled data. ME, AM, BZ, ARM and HB wrote the first draft of the report. Other authors commented on the draft report.

942

943 **Declaration of interests**

ME reports a charitable grant from the AstraZeneca Young Health Programme. The authors alone are responsible for the views expressed in this Article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.

947

948 Additional Information

949 Supplementary Information is available for this paper.

- 951 Correspondence and requests for materials should be addressed to Majid Ezzati
- 952 (majid.ezzati@imperial.ac.uk).
- 953
- 954 Reprints and permissions information is available at www.nature.com/reprints.

955 NCD Risk Factor Collaboration (NCD-RisC)

956 Authors

Anu Mishra^{1*}, Bin Zhou^{1*}, Andrea Rodriguez-Martinez^{1*}, Honor Bixby^{2,3*}, Rosie K. Singleton¹, 957 Rodrigo M. Carrillo-Larco¹, Kate E. Sheffer¹, Christopher J. Paciorek⁴, James E. Bennett¹, Victor 958 Lhoste¹, Maria L. C. Iurilli¹, Mariachiara Di Cesare³, James Bentham⁵, Nowell H. Phelps¹, Marisa 959 K. Sophiea¹, Gretchen A. Stevens⁶, Goodarz Danaei⁷, Melanie J. Cowan⁶, Stefan Savin⁶, Leanne 960 M. Riley⁶, Edward W. Gregg¹, Wichai Aekplakorn⁸, Noor Ani Ahmad⁹, Jennifer L. Baker¹⁰, Adela 961 Chirita-Emandi¹¹, Farshad Farzadfar¹², Günther Fink^{13,14}, Mirjam Heinen¹⁵, Nayu Ikeda¹⁶, Andre 962 P. Kengne¹⁷, Young-Ho Khang¹⁸, Tiina Laatikainen^{19,20}, Avula Laxmaiah²¹, Jun Ma²², Michele 963 Monroy-Valle²³, Malay K. Mridha²⁴, Cristina P. Padez²⁵, Andrew Reynolds²⁶, Maroje Sorić^{27,28}, 964 Gregor Starc²⁸, James P. Wirth²⁹, Leandra Abarca-Gómez³⁰, Ziad A. Abdeen³¹, Shynar 965 Abdrakhmanova³², Suhaila Abdul Ghaffar⁹, Hanan F. Abdul Rahim³³, Zulfiya Abdurrahmonova³⁴, 966 Niveen M. Abu-Rmeileh³⁵, Jamila Abubakar Garba³⁶, Benjamin Acosta-Cazares³⁷, Ishag Adam³⁸, 967 Marzena Adamczyk³⁹, Robert J. Adams⁴⁰, Seth Adu-Áfarwuah⁴¹, Kaosar Afsana²⁴, Shoaib 968 Afzal^{42,43}, Valirie N. Agbor⁴⁴, Imelda A. Agdeppa⁴⁵, Javad Aghazadeh-Attari⁴⁶, Hassan 969 Aguenaou⁴⁷, Carlos A. Aguilar-Salinas⁴⁸, Charles Agyemang⁴⁹, Mohamad Hasnan Ahmad⁹, Ali 970 Ahmadi⁵⁰, Naser Ahmadi¹², Nastaran Ahmadi⁵¹, Imran Ahmed⁵², Soheir H. Ahmed⁵³, Wolfgang 971 Ahrens⁵⁴, Gulmira Aitmurzaeva⁵⁵, Kamel Ajlouni⁵⁶, Hazzaa M. Al-Hazzaa⁵⁷, Badreya Al-Lahou⁵⁸, 972 Rajaa Al-Raddadi⁵⁹, Huda M. Al Hourani⁶⁰, Nawal M. Al Qaoud⁶¹, Monira Alarouj⁶², Fadia 973 AlBuhairan⁶³, Shahla AlDhukair⁶⁴, Maryam A. Aldwairji⁶¹, Sylvia Alexius⁶⁵, Mohamed M. Ali⁶, 974 Abdullah Alkandari⁶², Ala'a Alkerwi⁶⁶, Buthaina M. Alkhatib⁶⁰, Kristine Allin¹⁰, Mar Alvarez-975 Pedrerol⁶⁷, Eman Aly⁶⁸, Deepak N. Amarapurkar⁶⁹, Pilar Amiano Etxezarreta⁷⁰, John Amoah⁷¹, Norbert Amougou⁷², Philippe Amouyel^{73,74}, Lars Bo Andersen⁷⁵, Sigmund A. Anderssen⁷⁶, 976 977 Odysseas Androutsos⁷⁷, Lars Ängquist⁴², Ranjit Mohan Anjana⁷⁸, Alireza Ansari-Moghaddam⁷⁹, 978 Elena Anufrieva⁸⁰, Hajer Aounallah-Skhiri⁸¹, Joana Araújo⁸², Inger Ariansen⁸³, Tahir Aris⁹, 979 Raphael E. Arku⁸⁴, Nimmathota Arlappa²¹, Krishna K. Aryal⁸⁵, Nega Aseffa⁸⁶, Thor Aspelund⁸⁷, 980 Felix K. Assah⁸⁸, Batyrbek Assembekov⁸⁹, Maria Cecília F. Assunção⁹⁰, May Soe Aung⁹¹, Juha Auvinen^{92,93}, Mária Avdičová⁹⁴, Shina Avi^{95,96}, Ana Azevedo⁹⁷, Mohsen Azimi-Nezhad⁹⁸, 981 982 Fereidoun Azizi⁹⁹, Mehrdad Azmin¹², Bontha V. Babu¹⁰⁰, Maja Bæksgaard Jørgensen¹⁰¹, Azli 983 Baharudin⁹, Suhad Bahijri⁵⁹, Marta Bakacs¹⁰², Nagalla Balakrishna²¹, Yulia Balanova¹⁰³, Mohamed Bamoshmoosh¹⁰⁴, Maciej Banach¹⁰⁵, José R. Banegas¹⁰⁶, Joanna Baran¹⁰⁷, Rafał 984 985 Baran¹⁰⁷, Carlo M. Barbagallo¹⁰⁸, Valter Barbosa Filho¹⁰⁹, Alberto Barceló¹¹⁰, Maja Baretić¹¹¹, 986 Amina Barkat¹¹², Joaquin Barnoya¹¹³, Lena Barrera¹¹⁴, Marta Barreto^{115,116}, Aluisio J. D. Barros⁹⁰, 987 Mauro Virgílio Gomes Barros¹¹⁷, Anna Bartosiewicz¹⁰⁷, Abdul Basit¹¹⁸, Joao Luiz D. Bastos¹¹⁹, 988 Iqbal Bata¹²⁰, Anwar M. Batieha¹²¹, Aline P. Batista¹²², Rosangela L. Batista¹²³, Zhamilya 989 Battakova³², Louise A. Baur¹²⁴, Pascal M. Bayauli¹²⁵, Robert Beaglehole¹²⁶, Silvia Bel-Serrat¹²⁷, 990 Antonisamy Belavendra¹²⁸, Habiba Ben Romdhane¹²⁹, Judith Benedics¹³⁰, Mikhail Benet¹³¹, Gilda 991 Estela Benitez Rolandi¹³², Elling Bere¹³³, Ingunn Holden Bergh⁸³, Yemane Berhane¹³⁴, Salim Berkinbayev¹³⁵, Antonio Bernabe-Ortiz¹³⁶, Gailute Bernotiene¹³⁷, Ximena Berrios Carrasola¹³⁸, 992 993 Heloísa Bettiol¹³⁹, Manfred E. Beutel¹⁴⁰, Augustin F. Beybey⁸⁸, Jorge Bezerra¹¹⁷, Aroor 994 Bhagyalaxmi¹⁴¹, Sumit Bharadwaj¹⁴², Santosh K. Bhargava¹⁴³, Hongsheng Bi¹⁴⁴, Yufang Bi¹⁴⁵, 995 Daniel Bia¹⁴⁶, Katia Biasch¹⁴⁷, Elysée Claude Bika Lele¹⁴⁸, Mukharram M. Bikbov¹⁴⁹. Bihungum 996 Bista¹⁵⁰, Dusko J. Bjelica¹⁵¹, Anne A. Bjerregaard¹⁰, Peter Bjerregaard¹⁵², Espen Bjertness⁵³, 997 Marius B. Bjertness⁵³, Cecilia Björkelund¹⁵³, Katia V. Bloch¹⁵⁴, Anneke Blokstra¹⁵⁵, Moran 998 Blychfeld Magnazu^{156,157}, Simona Bo¹⁵⁸, Martin Bobak¹⁵⁹, Lynne M. Boddy¹⁶⁰, Bernhard O. 999 Boehm¹⁶¹, Jolanda M. A. Boer¹⁵⁵, Jose G. Boggia¹⁴⁶, Elena Bogova¹⁶², Carlos P. Boissonnet¹⁶³, 1000 Stig E. Bojesen^{43,42}, Marialaura Bonaccio¹⁶⁴, Vanina Bongard¹⁶⁵, Alice Bonilla-Vargas³⁰, Matthias 1001 Bopp¹⁶⁶, Herman Borghs¹⁶⁷, Pascal Bovet^{168,169}, Khadichamo Boymatova¹⁷⁰, Lien Braeckevelt¹⁷¹, 1002

Lutgart Braeckman¹⁷², Marjolijn C. E. Bragt¹⁷³, Imperia Brajkovich¹⁷⁴, Francesco Branca⁶, Juergen 1003 Breckenkamp¹⁷⁵, João Breda¹⁷⁶, Hermann Brenner¹⁷⁷, Lizzy M. Brewster⁴⁹, Garry R. Brian¹⁷⁸, 1004 Yajaira Briceño¹⁷⁹, Lacramioara Brinduse¹⁸⁰, Miguel Brito¹⁸¹, Sinead Brophy¹⁸², Johannes Brug¹⁵⁵, Graziella Bruno¹⁵⁸, Anna Bugge¹⁸³, Frank Buntinx¹⁶⁷, Marta Buoncristiano¹⁵, Genc Burazeri¹⁸⁴, 1005 1006 Con Burns¹⁸⁵, Antonio Cabrera de León¹⁸⁶, Joseph Cacciottolo¹⁸⁷, Hui Cai¹⁸⁸, Roberta B. 1007 Caixeta¹⁸⁹, Tilema Cama¹⁹⁰, Christine Cameron¹⁹¹, José Camolas¹⁹², Günay Can¹⁹³, Ana Paula C. Cândido¹⁹⁴, Felicia Cañete¹³², Mario V. Capanzana⁴⁵, Naděžda Čapková¹⁹⁵, Eduardo 1008 1009 Capuano¹⁹⁶, Rocco Capuano¹⁹⁶, Vincenzo Capuano¹⁹⁶, Marloes Cardol¹⁹⁷, Viviane C. Cardoso¹³⁹, Axel C. Carlsson¹⁹⁸, Esteban Carmuega¹⁹⁹, Joana Carvalho²⁰⁰, José A. Casajús²⁰¹, Felipe F. 1010 1011 Casanueva²⁰², Maribel Casas⁶⁷, Ertugrul Celikcan²⁰³, Laura Censi²⁰⁴, Marvin Cervantes-Loaiza³⁰, 1012 Juraci A. Cesar²⁰⁵, Snehalatha Chamukuttan²⁰⁶, Angelique Chan²⁰⁷, Queenie Chan¹, Himanshu 1013 K. Chaturvedi²⁰⁸, Nish Chaturvedi¹⁵⁹, Norsyamlina Che Abdul Rahim⁹, Miao Li Chee²⁰⁹, Chien-Jen 1014 Chen²¹⁰, Fangfang Chen²¹¹, Huashuai Chen²¹², Shuohua Chen²¹³, Zhengming Chen⁴⁴, Ching-Yu 1015 Cheng²¹⁴, Yiling J. Cheng²¹⁵, Bahman Cheraghian²¹⁶, Angela Chetrit²¹⁷, Ekaterina Chikova-1016 Iscener²¹⁸, Mai J. M. Chinapaw²¹⁹, Anne Chinnock²²⁰, Arnaud Chiolero²²¹, Shu-Ti Chiou²²², María-1017 Dolores Chirlaque²²³, Belong Cho²²⁴, Kaare Christensen²²⁵, Diego G. Christofaro²²⁶, Jerzy 1018 Chudek²²⁷, Renata Cifkova^{228,229}, Michelle Cilia²³⁰, Eliza Cinteza¹⁸⁰, Massimo Cirillo²³¹, Frank 1019 Claessens¹⁶⁷, Janine Clarke²³², Els Clays¹⁷², Emmanuel Cohen⁷², Laura-María Compañ-1020 Gabucio²³³, Hans Concin²³⁴, Susana C. Confortin¹²³, Cyrus Cooper²³⁵, Tara C. Coppinger¹⁸⁵, Eva 1021 Corpeleijn¹⁹⁷, Lilia Yadira Cortés²³⁶, Simona Costanzo¹⁶⁴, Dominique Cottel²³⁷, Chris Cowell¹²⁴, 1022 Cora L. Craig¹⁹¹, Amelia C. Crampin²³⁸, Amanda J. Cross¹, Ana B. Crujeiras²³⁹, Juan J. Cruz¹⁰⁶, Tamás Csányi²⁴⁰, Semánová Csilla²⁴¹, Alexandra M. Cucu^{242,243}, Liufu Cui²¹³, Felipe V. Cureau²⁴⁴, 1023 1024 Sarah Cuschieri¹⁸⁷, Ewelina Czenczek-Lewandowska¹⁰⁷, Graziella D'Arrigo²⁴⁵, Eleonora d'Orsi¹¹⁹, 1025 Liliana Dacica²⁴⁶, Jean Dallongeville²³⁷, Albertino Damasceno²⁴⁷, Camilla T. Damsgaard⁴², Rachel 1026 Dankner²¹⁷, Thomas M. Dantoft¹⁰, Parasmani Dasgupta²⁴⁸, Saeed Dastgiri²⁴⁹, Luc Dauchet^{73,74}, 1027 Kairat Davletov⁸⁹, Maria Alice Altenburg de Assis¹¹⁹, Guy De Backer¹⁷², Dirk De Bacquer¹⁷², 1028 Amalia De Curtis¹⁶⁴, Patrícia de Fragas Hinnig¹¹⁹, Giovanni de Gaetano¹⁶⁴, Stefaan De Henauw¹⁷², 1029 Pilar De Miguel-Etayo^{239,201}, Paula Duarte de Oliveira⁹⁰, David De Ridder²⁵⁰, Karin De Ridder²⁵¹, 1030 Susanne R. de Rooij^{252,49}, Delphine De Smedt¹⁷², Mohan Deepa⁷⁸, Alexander D. Deev²⁵³, Vincent Jr DeGennaro²⁵⁴, Hélène Delisle²⁵⁵, Francis Delpeuch²⁵⁶, Stefaan Demarest²⁵¹, Elaine 1031 1032 Dennison²³⁵, Katarzyna Dereń¹⁰⁷, Valérie Deschamps²⁵⁷, Meghnath Dhimal¹⁵⁰, Augusto Di Castelnuovo²⁵⁸, Juvenal Soares Dias-da-Costa²⁵⁹, María Elena Díaz-Sánchez²⁶⁰, Alejandro 1033 1034 Diaz²⁶¹, Pedro Díaz Fernández²⁶², María Pilar Díez Ripollés²⁶³, Zivka Dika²⁷, Shirin Djalalinia²⁶⁴, Visnja Djordjic²⁶⁵, Ha T. P. Do²⁶⁶, Annette J. Dobson²⁶⁷, Liria Dominguez²⁶⁸, Maria Benedetta 1035 1036 Donati¹⁶⁴, Chiara Donfrancesco²⁶⁹, Guanghui Dong²⁷⁰, Yanhui Dong²², Silvana P. Donoso²⁷¹, 1037 Angela Döring²⁷², Maria Dorobantu¹⁸⁰, Ahmad Reza Dorosty²⁷³, Kouamelan Doua²⁷⁴, Nico Dragano²⁷⁵, Wojciech Drygas^{276,105}, Jia Li Duan²⁷⁷, Charmaine A. Duante⁴⁵, Priscilla Duboz²⁷⁸, 1038 1039 Vesselka L. Duleva²¹⁸, Virginija Dulskiene¹³⁷, Samuel C. Dumith²⁰⁵, Anar Dushpanova^{279,280}, Azhar 1040 Dyussupova²⁸¹, Vilnis Dzerve²⁸², Elzbieta Dziankowska-Zaborszczyk¹⁰⁵, Guadalupe 1041 Echeverría¹³⁸, Ricky Eddie²⁸³, Ebrahim Eftekhar²⁸⁴, Eruke E. Egbagbe²⁸⁵, Robert Eggertsen¹⁵³, 1042 Sareh Eghtesad²⁷³, Gabriele Eiben²⁸⁶, Ulf Ekelund⁷⁶, Mohammad El-Khateeb⁵⁶, Laila El 1043 Ammari²⁸⁷, Jalila El Ati²⁸⁸, Denise Eldemire-Shearer²⁸⁹, Marie Eliasen¹⁰, Paul Elliott¹, Ronit 1044 Endevelt^{156,290}, Reina Engle-Stone²⁹¹, Rajiv T. Erasmus²⁹², Raimund Erbel²⁹³, Cihangir Erem²⁹⁴, Gul Ergor²⁹⁵, Louise Eriksen¹⁵², Johan G. Eriksson²⁹⁶, Jorge Escobedo-de la Peña³⁷, Saeid Eslami²⁹⁷, Ali Esmaeili²⁹⁸, Alun Evans²⁹⁹, David Faeh¹⁶⁶, Ildar Fakhradiyev¹³⁵, Albina A. 1045 1046 1047 Fakhretdinova¹⁴⁹, Caroline H. Fall²³⁵, Elnaz Faramarzi³⁰⁰, Mojtaba Farjam³⁰¹, Victoria Farrugia 1048 Sant'Angelo²³⁰, Mohammad Reza Fattahi³⁰², Asher Fawwad³⁰³, Wafaie W. Fawzi⁷, Edit Feigl¹⁰², 1049 Francisco J. Felix-Redondo³⁰⁴, Trevor S. Ferguson²⁸⁹, Romulo A. Fernandes²²⁶, Daniel 1050 Fernández-Bergés³⁰⁵, Daniel Ferrante³⁰⁶, Thomas Ferrao²³², Gerson Ferrari³⁰⁷, Marika Ferrari²⁰⁴, 1051 Marco M. Ferrario³⁰⁸, Catterina Ferreccio¹³⁸, Haroldo S. Ferreira³⁰⁹, Eldridge Ferrer⁴⁵, Jean Ferrieres¹⁶⁵, Thamara Hubler Figueiró¹¹⁹, Anna Fijalkowska³¹⁰, Mauro Fisberg³¹¹, Krista 1052 1053

Fischer³¹², Leng Huat Foo³¹³, Maria Forsner³¹⁴, Heba M. Fouad⁶⁸, Damian K. Francis²⁸⁹, Maria do 1054 Carmo Franco³¹⁵, Zlatko Fras³¹⁶, Guillermo Frontera³¹⁷, Flavio D. Fuchs³¹⁸, Sandra C. Fuchs³¹⁹, 1055 Isti I. Fujiati³²⁰, Yuki Fujita³²¹, Matsuda Fumihiko³²², Viktoriya Furdela³²³, Takuro Furusawa³²², Zbigniew Gaciong³²⁴, Mihai Gafencu¹¹, Manuel Galán Cuesta³²⁵, Andrzej Galbarczyk³²⁶, Henrike 1056 1057 Galenkamp⁴⁹, Daniela Galeone³²⁷, Myriam Galfo²⁰⁴, Fabio Galvano³²⁸, Jingli Gao²¹³, Pei Gao²², 1058 Manoli Garcia-de-la-Hera²²³, María José García Mérida²⁶², Marta García Solano³²⁹, Dickman 1059 Gareta³³⁰, Sarah P. Garnett¹²⁴, Jean-Michel Gaspoz³³¹, Magda Gasull²²³, Adroaldo Cesar Araujo 1060 Gaya³¹⁹, Anelise Reis Gaya³¹⁹, Andrea Gazzinelli³³², Ulrike Gehring³³³, Harald Geiger²³⁴, Johanna 1061 M. Geleijnse³³⁴, Ronnie George³³⁵, Ebrahim Ghaderi³³⁶, Ali Ghanbari¹², Erfan Ghasemi¹², Oana-Florentina Gheorghe-Fronea¹⁸⁰, Alessandro Gialluisi³⁰⁸, Simona Giampaoli²⁶⁹, Francesco 1062 1063 Gianfagna^{308,258}, Christian Gieger²⁷², Tiffany K. Gill³³⁷, Jonathan Giovannelli^{73,74}, Glen Gironella⁴⁵, 1064 Aleksander Giwercman³³⁸, Konstantinos Gkiouras³³⁹, Natalya Glushkova^{280,89}, Natalja 1065 Gluškova³⁴⁰, Ramesh Godara³⁴¹, Justyna Godos³²⁸, Sibel Gogen²⁰³, Marcel Goldberg^{342,343}, David 1066 Goltzman², Georgina Gómez²²⁰, Jesús Humberto Gómez Gómez³⁴⁴, Luis F. Gomez²³⁶, Santiago 1067 F. Gómez^{345,346}, Aleksandra Gomula³⁴⁷, Bruna Gonçalves Cordeiro da Silva⁹⁰, Helen Gonçalves⁹⁰, 1068 Mauer Gonçalves³⁴⁸, Ana D. González-Alvarez³⁴⁹, David A. Gonzalez-Chica³³⁷, Esther M. 1069 González-Gil²⁰¹, Marcela Gonzalez-Gross³⁵⁰, Margot González-Leon³⁷, Juan P. González-1070 Rivas³⁵¹, Clicerio González-Villalpando³⁵², María-Elena González-Villalpando³⁵³, Angel R. 1071 Gonzalez³⁵⁴, Frederic Gottrand⁷³, Antonio Pedro Graça³⁵⁵, Sidsel Graff-Iversen⁸³, Dušan 1072 Grafnetter³⁵⁶, Aneta Grajda³⁵⁷, Maria G. Grammatikopoulou³⁵⁸, Ronald D. Gregor¹²⁰, Maria João 1073 Gregório³⁵⁵, Else Karin Grøholt⁸³, Anders Grøntved²²⁵, Giuseppe Grosso³²⁸, Gabriella Gruden¹⁵⁸, Dongfeng Gu³⁵⁹, Viviana Guajardo³⁶⁰, Emanuela Gualdi-Russo³⁶¹, Pilar Guallar-Castillón¹⁰⁶, 1074 1075 Andrea Gualtieri³⁶², Elias F. Gudmundsson³⁶³, Vilmundur Gudnason⁸⁷, Ramiro Guerrero³⁶⁴, Idris 1076 Guessous²⁵⁰, Andre L. Guimaraes³⁶⁵, Martin C. Gulliford³⁶⁶, Johanna Gunnlaugsdottir³⁶³, Marc J. 1077 Gunter³⁶⁷, Xiu-Hua Guo³⁶⁸, Yin Guo³⁶⁹, Prakash C. Gupta³⁷⁰, Rajeev Gupta³⁷¹, Oye Gureje³⁷², 1078 Enrique Gutiérrez González³²⁹, Laura Gutierrez³⁷³, Felix Gutzwiller¹⁶⁶, Xinyi Gwee²¹⁴, Seongjun 1079 Ha³⁷⁴, Farzad Hadaegh³⁷⁵, Charalambos A. Hadjigeorgiou³⁷⁶, Rosa Haghshenas¹², Hamid 1080 Hakimi²⁹⁸, Jytte Halkjær³⁷⁷, Ian R. Hambleton³⁷⁸, Behrooz Hamzeh³⁷⁹, Willem A. Hanekom³⁸⁰, 1081 Dominique Hange¹⁵³, Abu A. M. Hanif²⁴, Sari Hantunen¹⁹, Jie Hao³⁶⁹, Carla Menêses Hardman³⁸¹, 1082 Rachakulla Hari Kumar²¹, Tina Harmer Lassen¹⁰¹, Javad Harooni³⁸², Seyed Mohammad Hashemi-1083 Shahri⁷⁹, Maria Hassapidou³⁸³, Jun Hata³⁸⁴, Teresa Haugsgjerd³⁸⁵, Alison J. Hayes¹²⁴, Jiang 1084 He³⁸⁶, Yuan He³⁸⁷, Yuna He³⁸⁸, Regina Heidinger-Felső³⁸⁹, Margit Heier²⁷², Tatjana Hejgaard³⁹⁰, 1085 Marleen Elisabeth Hendriks³⁹¹, Rafael dos Santos Henrique³⁸¹, Ana Henriques⁸², Leticia 1086 Hernandez Cadena³⁵², Sauli Herrala⁹², Marianella Herrera-Cuenca¹⁷⁴, Victor M. Herrera³⁹², 1087 Isabelle Herter-Aeberli³⁹³, Karl-Heinz Herzig^{93,92}, Ramin Heshmat³⁹⁴, Allan G. Hill²³⁵, Sai Yin Ho³⁹⁵, 1088 Suzanne C. Ho³⁹⁶, Michael Hobbs³⁹⁷, Doroteia A. Höfelmann³⁹⁸, Michelle Holdsworth²⁵⁶, Reza 1089 Homayounfar³⁹⁹, Clara Homs^{400,401}, Wilma M. Hopman⁴⁰², Andrea R. V. R. Horimoto¹³⁹, Claudia 1090 M. Hormiga⁴⁰³, Bernardo L. Horta⁹⁰, Leila Houti⁴⁰⁴, Christina Howitt³⁷⁸, Thein Thein Htay⁴⁰⁵, Aung 1091 Soe Htet⁵³, Maung Maung Than Htike⁴⁰⁶, Yonghua Hu²², José María Huerta²²³, Ilpo Tapani 1092 Huhtaniemi¹, Laetitia Huiart⁴⁰⁷, Constanta Huidumac Petrescu²⁴², Martijn Huisman⁴⁰⁸, Abdullatif 1093 Husseini³⁵, Chinh Nguyen Huu²⁶⁶, Inge Huybrechts³⁶⁷, Nahla Hwalla⁴⁰⁹, Jolanda Hyska¹⁸⁴, Licia Iacoviello^{164,308}, Ellina M. Iakupova¹⁴⁹, Jesús M. Ibarluzea²²³, Mohsen M. Ibrahim⁴¹⁰, Norazizah Ibrahim Wong⁹, M. Arfan Ikram⁴¹¹, Carmen Iñiguez⁴¹², Violeta Iotova⁴¹³, Vilma E. Irazola³⁷³, 1094 1095 1096 Takafumi Ishida⁴¹⁴, Godsent C. Isiguzo⁴¹⁵, Muhammad Islam⁴¹⁶, Sheikh Mohammed Shariful 1097 Islam⁴¹⁷, Duygu Islek⁴¹⁸, Ivaila Y. Ivanova-Pandourska⁴¹⁹, Masanori Iwasaki⁴²⁰, Tuija 1098 Jääskeläinen²⁰, Rod T. Jackson¹²⁶, Jeremy M. Jacobs⁴²¹, Michel Jadoul⁴²², Tazeen Jafar²⁰⁷, 1099 Bakary Jallow⁴²³, Kenneth James²⁸⁹, Kazi M. Jamil⁴²⁴, Konrad Jamrozik^{337,776}, Anna Jansson⁴²⁵, Imre Janszky⁴²⁶, Edward Janus⁴²⁷, Juel Jarani⁴²⁸, Marjo-Riitta Jarvelin^{1,93}, Grazyna Jasienska³²⁶, 1100 1101 Ana Jelaković¹¹¹, Bojan Jelaković²⁷, Garry Jennings⁴²⁹, Chao Qiang Jiang⁴³⁰, Ramon O. Jimenez⁴³¹, Karl-Heinz Jöckel²⁹³, Michel Joffres⁴³², Jari J. Jokelainen⁹², Jost B. Jonas⁴³³, Jitendra 1102 1103 Jonnagaddala⁴³⁴, Torben Jørgensen¹⁰, Pradeep Joshi⁴³⁵, Josipa Josipović¹¹¹, Farahnaz Joukar⁴³⁶, 1104

Jacek J. Jóźwiak⁴³⁷, Debra S. Judge³⁹⁷, Anne Juolevi²⁰, Gregor Jurak²⁸, Iulia Jurca Simina¹¹, 1105 Vesna Juresa²⁷, Rudolf Kaaks¹⁷⁷, Felix O. Kaducu⁴³⁸, Anthony Kafatos⁴³⁹, Mónika Kaj⁴⁴⁰, Eero O. 1106 Kajantie²⁰, Natia Kakutia⁴⁴¹, Daniela Kállayová⁴⁴², Zhanna Kalmatayeva²⁸⁰, Ofra Kalter-Leibovici²¹⁷, Yves Kameli²⁵⁶, Freja B. Kampmann¹⁰, Kodanda R. Kanala⁴⁴³, Srinivasan Kannan⁴⁴⁴, 1107 1108 Efthymios Kapantais⁴⁴⁵, Eva Karaglani⁴⁴⁶, Argyro Karakosta⁴⁴⁷, Line L. Kårhus¹⁰, Khem B. 1109 Karki⁴⁴⁸, Philippe B. Katchunga⁴⁴⁹, Marzieh Katibeh⁴⁵⁰, Joanne Katz⁴⁵¹, Peter T. Katzmarzyk⁴⁵², 1110 Jussi Kauhanen¹⁹, Prabhdeep Kaur⁴⁵³, Maryam Kavousi⁴¹¹, Gyulli M. Kazakbaeva¹⁴⁹, François F. 1111 Kaze⁸⁸, Calvin Ke⁴⁵⁴, Ulrich Keil⁴⁵⁵, Lital Keinan Boker⁴⁵⁶, Sirkka Keinänen-Kiukaanniemi⁹², Roya 1112 Kelishadi⁴⁵⁷, Cecily Kelleher¹²⁷, Han C. G. Kemper²¹⁹, Maryam Keramati²⁹⁷, Alina Kerimkulova⁴⁵⁸, 1113 Mathilde Kersting⁴⁵⁹, Timothy Key⁴⁴, Yousef Saleh Khader¹²¹, Arsalan Khaledifar⁴⁶⁰, Davood 1114 Khalili³⁹⁹, Kay-Tee Khaw⁴⁶¹, Bahareh Kheiri³⁹⁹, Motahareh Kheradmand⁴⁶², Alireza Khosravi⁴⁶³, 1115 Ilse M. S. L. Khouw¹⁷³, Ursula Kiechl-Kohlendorfer⁴⁶⁴, Sophia J. Kiechl⁴⁶⁵, Stefan Kiechl^{464,465}, 1116 Japhet Killewo⁴⁶⁶, Hyeon Chang Kim⁴⁶⁷, Jeongseon Kim⁴⁶⁸, Jenny M. Kindblom^{153,469}, Andrew Kingston⁴⁷⁰, Heidi Klakk⁴⁷¹, Magdalena Klimek³²⁶, Jeannette Klimont⁴⁷², Jurate Klumbiene¹³⁷, Michael Knoflach⁴⁶⁴, Bhawesh Koirala⁴⁷³, Elin Kolle⁷⁶, Patrick Kolsteren¹⁷², Jürgen König⁴⁷⁴, Raija 1117 1118 1119 Korpelainen⁹³, Paul Korrovits⁴⁷⁵, Magdalena Korzycka³¹⁰, Jelena Kos¹¹¹, Seppo Koskinen²⁰, 1120 Katsuyasu Kouda⁴⁷⁶, Éva Kovács⁴⁷⁷, Viktoria Anna Kovacs⁴⁴⁰, Irina Kovalskys⁴⁷⁸, Sudhir Kowlessur⁴⁷⁹, Slawomir Koziel³⁴⁷, Jana Kratenova¹⁹⁵, Wolfgang Kratzer⁴⁸⁰, Vilma 1121 1122 Kriaucioniene¹³⁷, Susi Kriemler¹⁶⁶, Peter Lund Kristensen²²⁵, Helena Krizan⁴⁸¹, Maria F. Kroker-1123 Lobos⁴⁸², Steinar Krokstad⁴²⁶, Daan Kromhout¹⁹⁷, Herculina S. Kruger^{483,484}, Ruan Kruger^{483,484}, 1124 Łukasz Kryst⁴⁸⁵, Ruzena Kubinova¹⁹⁵, Renata Kuciene¹³⁷, Urho M. Kujala⁴⁸⁶, Enisa Kujundzic⁴⁸⁷, 1125 Zbigniew Kulaga³⁵⁷, Mukhtar Kulimbet^{280,89}, R. Krishna Kumar⁴⁸⁸, Marie Kunešová⁴⁸⁹, Pawel 1126 Kurjata²⁷⁶, Yadlapalli S. Kusuma⁴⁹⁰, Vladimir Kutsenko¹⁰³, Kari Kuulasmaa²⁰, Catherine 1127 Kyobutungi⁴⁹¹, Quang Ngoc La⁴⁹², Fatima Zahra Laamiri⁴⁹³, Carl Lachat¹⁷², Karl J. Lackner¹⁴⁰, 1128 Youcef Laid⁴⁹⁴, Lachmie Lall⁴⁹⁵, Tai Hing Lam³⁹⁵, Maritza Landaeta Jimenez¹⁷⁴, Edwige 1129 Landais²⁵⁶, Vera Lanska³⁵⁶, Georg Lappas⁴⁹⁶, Bagher Larijani⁴⁹⁷, Simo Pone Larissa⁴⁹⁸, Tint Swe 1130 Latt⁴⁹⁹, Martino Laurenzi⁵⁰⁰, Laura Lauria²⁶⁹, Maria Lazo-Porras¹³⁶, Gwenaëlle Le Coroller⁶⁶, 1131 Khanh Le Nguyen Bao²⁶⁶, Agnès Le Port²⁵⁶, Tuyen D. Le²⁶⁶, Jeannette Lee^{214,501}, Jeonghee 1132 Lee⁴⁶⁸, Paul H. Lee⁵⁰², Nils Lehmann²⁹³, Terho Lehtimäki^{503,504}, Daniel Lemogoum⁵⁰⁵, Branimir 1133 Leskošek²⁸, Justyna Leszczak¹⁰⁷, Katja B. Leth-Møller¹⁰, Gabriel M. Leung³⁹⁵, Naomi S. Levitt⁵⁰⁶, 1134 Yanping Li⁷, Merike Liivak³⁴⁰, Christa L. Lilly⁵⁰⁷, Charlie Lim^{214,501}, Wei-Yen Lim^{214,501}, M. Fernanda 1135 Lima-Costa⁵⁰⁸, Hsien-Ho Lin²²², Xu Lin⁵⁰⁹, Yi-Ting Lin⁵¹⁰, Lars Lind⁵¹⁰, Vijaya Lingam³³⁵, Birgit Linkohr²⁷², Allan Linneberg¹⁰, Lauren Lissner¹⁵³, Mieczyslaw Litwin³⁵⁷, Jing Liu⁵¹¹, Lijuan Liu³⁶⁹, 1136 1137 Wei-Cheng Lo⁵¹², Helle-Mai Loit³⁴⁰, Khuong Quynh Long⁴⁹², Guadalupe Longo Abril⁵¹³, Luis 1138 Lopes²⁰⁰, Marcus V. V. Lopes¹¹⁹, Oscar Lopes⁵¹⁴, Esther Lopez-Garcia¹⁰⁶, Tania Lopez⁵¹⁵, Paulo 1139 A. Lotufo¹³⁹, José Eugenio Lozano⁵¹⁶, Janice L. Lukrafka⁵¹⁷, Dalia Luksiene¹³⁷, Annamari Lundqvist²⁰, Nuno Lunet²⁰⁰, Charles Lunogelo⁵¹⁸, Michala Lustigová^{228,195}, Edyta Łuszczki¹⁰⁷, 1140 1141 Jean-René M'Buyamba-Kabangu⁵¹⁹, Guansheng Ma²², Xu Ma³⁸⁷, George L. L. Machado-1142 Coelho¹²², Aristides M. Machado-Rodrigues²⁵, Enguerran Macia²⁷⁸, Luisa M. Macieira⁵²⁰, Ahmed 1143 A. Madar⁵³, Anja L. Madsen¹⁰, Gladys E. Maestre⁵²¹, Stefania Maggi⁵²², Dianna J. Magliano⁵²³, 1144 Sara Magnacca²⁵⁸, Emmanuella Magriplis⁵²⁴, Gowri Mahasampath¹²⁸, Bernard Maire²⁵⁶, Marjeta Majer²⁷, Marcia Makdisse⁵²⁵, Päivi Mäki²⁰, Fatemeh Malekzadeh²⁷³, Reza Malekzadeh^{302,273}, 1145 1146 Rahul Malhotra²⁰⁷, Kodavanti Mallikharjuna Rao²¹, Sofia K. Malyutina⁵²⁶, Lynell V. Maniego⁴⁵, 1147 Yannis Manios⁴⁴⁶, Masimango Imani Manix⁵²⁷, Jim I. Mann²⁶, Fariborz Mansour-Ghanaei⁴³⁶, Taru 1148 Manyanga⁵²⁸, Enzo Manzato⁵²⁹, Anie Marcil²³², Paula Margozzini¹³⁸, Joany Mariño⁵³⁰, Anastasia 1149 Markaki⁵³¹, Oonagh Markey⁵³², Eliza Markidou Ioannidou⁵³³, Pedro Marques-Vidal^{534,535}, Larissa 1150 Pruner Marques⁵³⁶, Jaume Marrugat^{537,538}, Yves Martin-Prevel²⁵⁶, Rosemarie Martin⁵³⁹, Reynaldo Martorell⁴¹⁸, Eva Martos⁵⁴⁰, Katharina Maruszczak⁵⁴¹, Stefano Marventano³²⁸, Giovanna 1151 1152 Masala⁵⁴², Luis P. Mascarenhas⁵⁴³, Shariq R. Masoodi⁵⁴⁴, Ellisiv B. Mathiesen⁵⁴⁵, Prashant 1153 Mathur⁵⁴⁶, Alicia Matijasevich¹³⁹, Piotr Matłosz¹⁰⁷, Tandi E. Matsha⁵⁴⁷, Victor Matsudo⁵⁴⁸, Christina 1154 Mavrogianni⁴⁴⁶, Artur Mazur¹⁰⁷, Jean Claude N. Mbanya⁸⁸, Shelly R. McFarlane²⁸⁹, Stephen T. 1155

McGarvey⁵⁴⁹, Martin McKee⁵⁵⁰, Stela McLachlan⁵⁵¹, Rachael M. McLean²⁶, Scott B. McLean²³², Margaret L. McNairy⁵⁵², Breige A. McNulty¹²⁷, Sounnia Mediene Benchekor⁴⁰⁴, Jurate 1156 1157 Medzioniene¹³⁷, Parinaz Mehdipour¹², Kirsten Mehlig¹⁵³, Amir Houshang Mehrparvar⁵¹, Aline Meirhaeghe⁵⁵³, Jørgen Meisfjord⁸³, Christa Meisinger²⁷², Jesus D. Melgarejo¹⁶⁷, Marina 1158 1159 Melkumova⁵⁵⁴, João Mello³¹⁹, Fabián Méndez¹¹⁴, Carlos O. Mendivil⁵⁵⁵, Ana Maria B. Menezes⁹⁰, 1160 Geetha R. Menon²⁰⁸, Gert B. M. Mensink⁵⁵⁶, Maria Teresa Menzano³²⁷, Indrapal I. Meshram²¹, 1161 Diane T. Meto⁵⁵⁷, Jie Mi²¹¹, Kim F. Michaelsen⁴², Nathalie Michels¹⁷², Kairit Mikkel³¹², Karolina 1162 Miłkowska³²⁶, Jody C. Miller²⁶, Olga Milushkina⁵⁵⁸, Cláudia S. Minderico⁵⁵⁹, G. K. Mini⁵⁶⁰, Juan 1163 Francisco Miquel¹³⁸, J. Jaime Miranda¹³⁶, Mohammad Reza Mirjalili⁵¹, Daphne Mirkopoulou⁵⁶¹, 1164 Erkin Mirrakhimov⁴⁵⁸, Marjeta Mišigoj-Duraković²⁷, Antonio Mistretta³²⁸, Veronica Mocanu⁵⁶², 1165 Pietro A. Modesti⁵⁶³, Sahar Saeedi Moghaddam¹², Bahram Mohajer¹², Mostafa K. Mohamed⁵⁶⁴, Shukri F. Mohamed⁴⁹¹, Kazem Mohammad²⁷³, Mohammad Reza Mohammadi²⁷³, Zahra 1166 1167 Mohammadi²⁷³, Noushin Mohammadifard⁵⁶⁵, Reza Mohammadpourhodki²⁹⁷, Viswanathan 1168 Mohan⁷⁸, Salim Mohanna¹³⁶, Muhammad Fadhli Mohd Yusoff⁹, Iraj Mohebbi⁴⁶, Farnam Mohebi⁴, 1169 Marie Moitry^{147,566}, Line T. Møllehave¹⁰, Niels C. Møller²²⁵, Dénes Molnár³⁸⁹, Amirabbas 1170 Momenan³⁹⁹, Charles K. Mondo⁵⁶⁷, Roger A. Montenegro Mendoza⁵⁶⁸, Eric Monterrubio-Flores³⁵², 1171 Kotsedi Daniel K. Monyeki⁵⁶⁹, Jin Soo Moon²²⁴, Mahmood Moosazadeh⁴⁶², Hermine T. Mopa⁸⁸, 1172 Farhad Moradpour³³⁶, Leila B. Moreira³¹⁹, Alain Morejon⁵⁷⁰, Luis A. Moreno^{201,239}, Francis 1173 Morey⁵⁷¹, Karen Morgan⁵⁷², Suzanne N. Morin², Erik Lykke Mortensen⁴², George Moschonis⁵⁷³, 1174 Alireza Moslem⁵⁷⁴, Malgorzata Mossakowska⁵⁷⁵, Aya Mostafa⁵⁶⁴, Seyed-Ali Mostafavi²⁷³, Anabela 1175 Mota-Pinto²⁵, Jorge Mota²⁰⁰, Mohammad Esmaeel Motlagh²¹⁶, Jorge Motta⁵⁶⁸, Marcos André 1176 Moura-dos-Santos¹¹⁷, Yeva Movsesyan⁵⁵⁴, Kelias P. Msyamboza⁵⁷⁶, Thet Thet Mu⁵⁷⁷, Magdalena Muc²⁵, Florian Muca⁵⁷⁸, Boban Mugoša⁴⁸⁷, Maria L. Muiesan⁵⁷⁹, Martina Müller-Nurasyid¹⁴⁰, 1177 1178 Thomas Münzel¹⁴⁰, Jaakko Mursu¹⁹, Elaine M. Murtagh⁵⁸⁰, Kamarul Imran Musa³¹³, Sanja Musić 1179 Milanović^{481,27}, Vera Musil²⁷, Geofrey Musinguzi⁵⁸¹, Muel Telo M. C. Muyer⁵⁸², Iraj Nabipour⁵⁸³, 1180 Shohreh Naderimagham¹², Gabriele Nagel⁵⁸⁴, Farid Najafi³⁷⁹, Harunobu Nakamura⁴⁷⁶, Hanna 1181 Nalecz³¹⁰, Jana Námešná⁹⁴, Ei Ei K. Nang^{214,501}, Vinay B. Nangia⁵⁸⁵, Martin Nankap⁵⁸⁶, Sameer Narake³⁷⁰, Paola Nardone²⁶⁹, Take Naseri⁵⁸⁷, Matthias Nauck⁵³⁰, William A. Neal⁵⁰⁷, Azim 1182 1183 Nejatizadeh²⁸⁴, Chandini Nekkantti⁴³⁴, Keiu Nelis³⁴⁰, Ilona Nenko³²⁶, Martin Neovius⁵⁸⁸, Flavio 1184 Nervi¹³⁸, Tze Pin Ng²¹⁴, Chung T. Nguyen⁵⁸⁹, Nguyen D. Nguyen⁵⁹⁰, Quang Ngoc Nguyen⁵⁹¹, 1185 Michael Y. Ni³⁹⁵, Rodica Nicolescu²⁴², Peng Nie⁵⁹², Ramfis E. Nieto-Martínez⁵⁹³, Yury P. Nikitin⁵²⁶, 1186 Guang Ning¹⁴⁵, Toshiharu Ninomiya³⁸⁴, Nobuo Nishi¹⁶, Sania Nishtar⁵⁹⁴, Marianna Noale⁵²², Oscar 1187 A. Noboa¹⁴⁶, Helena Nogueira²⁵, Maria Nordendahl³¹⁴, Børge G. Nordestgaard^{43,42}, Davide Noto¹⁰⁸, Natalia Nowak-Szczepanska³⁴⁷, Mohannad Al Nsour⁵⁹⁵, Irfan Nuhoğlu²⁹⁴, Baltazar Nunes^{115,116}, Eha Nurk³⁴⁰, Fred Nuwaha⁵⁸¹, Moffat Nyirenda⁵⁵⁰, Terence W. O'Neill⁵⁹⁶, Dermot 1188 1189 1190 O'Reilly²⁹⁹, Galina Obreja⁵⁹⁷, Caleb Ochimana⁷, Angélica M. Ochoa-Avilés²⁷¹, Eiji Oda⁵⁹⁸, 1191 Augustine N. Odili⁵⁹⁹, Kyungwon Oh⁶⁰⁰, Kumiko Ohara⁴⁷⁶, Claes Ohlsson^{153,469}, Ryutaro 1192 Ohtsuka⁶⁰¹, Örn Olafsson³⁶³, Maria Teresa A. Olinto³¹⁹, Isabel O. Oliveira⁹⁰, Mohd Azahadi Omar⁹, 1193 Saeed M. Omar⁶⁰², Altan Onat^{603,776}, Sok King Ong⁶⁰⁴, N. Charlotte Onland-Moret³³³, Lariane M. Ono³⁹⁸, Pedro Ordunez¹⁸⁹, Rui Ornelas⁶⁰⁵, Ana P. Ortiz⁶⁰⁶, Pedro J. Ortiz¹³⁶, Merete Osler¹⁰, Clive 1194 1195 Osmond²³⁵, Sergej M. Ostojic²⁶⁵, Afshin Ostovar⁶⁰⁷, Johanna A. Otero⁶⁰⁸, Kim Overvad⁴⁵⁰, Ellis Owusu-Dabo⁶⁰⁹, Fred Michel Paccaud¹⁶⁹, Ioannis Pagkalos³⁸³, Elena Pahomova²⁸², Karina Mary 1196 1197 de Paiva¹¹⁹, Andrzej Pająk³²⁶, Alberto Palloni⁶¹⁰, Luigi Palmieri²⁶⁹, Wen-Harn Pan²¹⁰, Songhomitra 1198 Panda-Jonas⁶¹¹, Arvind Pandey²⁰⁸, Francesco Panza⁶¹², Mariela Paoli¹⁷⁹, Sousana K. 1199 Papadopoulou³⁸³, Dimitrios Papandreou⁶¹³, Rossina G. Pareja²⁶⁸, Soon-Woo Park⁶¹⁴, Suyeon 1200 Park⁶⁰⁰, Winsome R. Parnell²⁶, Mahboubeh Parsaeian²⁷³, Ionela M. Pascanu⁶¹⁵, Patrick 1201 Pasquet⁷², Nikhil D. Patel⁶¹⁶, Marcos Pattussi²⁵⁹, Halyna Pavlyshyn³²³, Raimund Pechlaner⁴⁶⁴, 1202 Ivan Pećin¹¹¹, Mangesh S. Pednekar³⁷⁰, João M. Pedro⁶¹⁷, Nasheeta Peer⁶¹⁸, Sergio Viana 1203 Peixoto⁵⁰⁸, Markku Peltonen²⁰, Alexandre C. Pereira¹³⁹, Marco A. Peres⁶¹⁹, Cynthia M. Pérez⁶⁰⁶, 1204 Valentina Peterkova¹⁶², Annette Peters²⁷², Astrid Petersmann⁵³⁰, Janina Petkeviciene¹³⁷, Ausra 1205 Petrauskiene¹³⁷, Olga Petrovna Kovtun⁸⁰, Emanuela Pettenuzzo⁶²⁰, Niloofar Peykari²⁶⁴, Norbert 1206

Pfeiffer¹⁴⁰, Modou Cheyassin Phall⁴²³, Son Thai Pham⁶²¹, Rafael N. Pichardo⁶²², Daniela 1207 Pierannunzio²⁶⁹, Iris Pigeot⁵⁴, Hynek Pikhart¹⁵⁹, Aida Pilav⁶²³, Lorenza Pilotto⁶²⁴, Francesco Pistelli⁶²⁵, Freda Pitakaka⁶²⁶, Aleksandra Piwonska²⁷⁶, Andreia N. Pizarro²⁰⁰, Pedro Plans-Rubió⁶²⁷, Alina G. Platonova⁶²⁸, Bee Koon Poh⁶²⁹, Hermann Pohlabeln⁵⁴, Nadija S. Polka⁶²⁸, 1208 1209 1210 Raluca M. Pop⁶¹⁵, Stevo R. Popovic¹⁵¹, Miquel Porta⁵³⁸, Georg Posch²³⁴, Anil Poudyal¹⁵⁰, Dimitrios 1211 Poulimeneas³⁸³, Hamed Pouraram²⁷³, Farhad Pourfarzi⁶³⁰, Akram Pourshams²⁷³, Hossein 1212 Poustchi²⁷³, Rajendra Pradeepa⁷⁸, Alison J. Price⁵⁵⁰, Jacqueline F. Price⁵⁵¹, Antonio Prista⁶³¹, Rui 1213 Providencia¹⁵⁹, Jardena J. Puder⁵³⁴, Iveta Pudule⁶³², Maria Puiu¹¹, Margus Punab⁴⁷⁵, Muhammed 1214 S. Qadir⁶³³, Radwan F. Qasrawi³¹, Mostafa Qorbani⁶³⁴, Hedley K. Quintana⁵⁶⁸, Pedro J. Quiroga-1215 Padilla⁵⁵⁵, Tran Quoc Bao⁶³⁵, Stefan Rach⁵⁴, Ivana Radic²⁶⁵, Ricardas Radisauskas¹³⁷, Salar 1216 Rahimikazerooni³⁰², Mahfuzar Rahman⁶³⁶, Mahmudur Rahman⁶³⁷, Olli Raitakari⁶³⁸, Manu Raj⁴⁸⁸, Tamerlan Rajabov⁶³⁹, Sherali Rakhmatulloev³⁴, Ivo Rakovac¹⁵, Sudha Ramachandra Rao⁴⁵³, 1217 1218 Ambady Ramachandran²⁰⁶, Otim P. C. Ramadan⁶⁴⁰, Virgílio V. Ramires⁶⁴¹, Jacqueline Ramke¹²⁶, Elisabete Ramos⁹⁷, Rafel Ramos⁶⁴², Lekhraj Rampal⁶⁴³, Sanjay Rampal⁶⁴⁴, Lalka S. 1219 1220 Rangelova²¹⁸, Vayia Rarra⁶⁴⁵, Ramon A. Rascon-Pacheco³⁷, Cassiano Ricardo Rech¹¹⁹, Josep 1221 Redon⁴¹², Paul Ferdinand M. Reganit⁶⁴⁶, Valéria Regecová⁶⁴⁷, Jane D. P. Renner⁶⁴⁸, Judit A. Repasy³⁸⁹, Cézane P. Reuter⁶⁴⁸, Luis Revilla⁵¹⁵, Abbas Rezaianzadeh³⁰², Yeunsook Rho³⁷⁴, 1222 1223 Lourdes Ribas-Barba⁶⁴⁹, Robespierre Ribeiro^{650,776}, Elio Riboli¹, Adrian Richter⁵³⁰, Fernando 1224 Rigo⁶⁵¹, Attilio Rigotti¹³⁸, Natascia Rinaldo³⁶¹, Tobias F. Rinke de Wit⁶⁵², Ana I. Rito¹¹⁵, Raphael M. Ritti-Dias⁶⁵³, Juan A. Rivera³⁵², Reina G. Roa⁶⁵⁴, Louise Robinson⁴⁷⁰, Cynthia Robitaille⁶⁵⁵, 1225 1226 Romana Roccaldo²⁰⁴, Daniela Rodrigues²⁵, Fernando Rodríguez-Artalejo¹⁰⁶, María del Cristo Rodriguez-Perez²⁶², Laura A. Rodríguez-Villamizar⁶⁵⁶, Andrea Y. Rodríguez⁶⁵⁷, Ulla Roggenbuck²⁹³, Peter Rohloff⁶⁵⁸, Fabian Rohner⁶⁵⁹, Rosalba Rojas-Martinez³⁵², Nipa Rojroongwasinkul⁸, Dora Romaguera²³⁹, Elisabetta L. Romeo⁶⁶⁰, Rafaela V. Rosario⁶⁶¹, Annika 1227 1228 1229 1230 Rosengren^{153,469}, Ian Rouse⁶⁶², Vanessa Rouzier⁶⁶³, Joel G. R. Roy²³², Maira H. Ruano⁶⁶⁴, Adolfo 1231 Rubinstein³⁷³, Frank J. Rühli¹⁶⁶, Jean-Bernard Ruidavets¹⁶⁵, Blanca Sandra Ruiz-Betancourt³⁷, 1232 Maria Ruiz-Castell⁶⁶, Emma Ruiz Moreno⁶⁶⁵, Iuliia A. Rusakova¹⁴⁹, Kenisha Russell Jonsson⁴²⁵, 1233 Paola Russo⁶⁶⁶, Petra Rust⁴⁷⁴, Marcin Rutkowski⁶⁶⁷, Marge Saamel³⁴⁰, Charumathi Sabanayagam²⁰⁹, Hamideh Sabbaghi³⁹⁹, Elena Sacchini³⁶², Harshpal S. Sachdev⁶⁶⁸, Alireza 1234 1235 Sadiadi²⁷³, Ali Reza Safarpour³⁰², Sare Safi³⁹⁹, Saeid Safiri³⁰⁰, Mohammad Hossien Saghi⁵⁷⁴, Olfa 1236 Saidi¹²⁹, Nader Saki²¹⁶, Sanja Šalaj²⁷, Benoit Salanave²⁵⁷, Eduardo Salazar Martinez³⁵², Calogero 1237 Saleva⁵⁴², Diego Salmerón²²³, Veikko Salomaa²⁰, Jukka T. Salonen²⁹⁶, Massimo Salvetti⁵⁷⁹, Margarita Samoutian⁶⁶⁹, Jose Sánchez-Abanto⁶⁷⁰, Inés Sánchez Rodríguez³⁴⁴, Sandjaja⁶⁷¹, Susana Sans⁶⁷², Loreto Santa Marina⁶⁷³, Ethel Santacruz¹³², Diana A. Santos⁵⁵⁹, Ina S. Santos⁹⁰, 1238 1239 1240 Lèlita C. Santos⁵²⁰, Maria Paula Santos²⁰⁰, Osvaldo Santos⁶⁷⁴, Rute Santos²⁰⁰, Tamara R. 1241 Santos⁶⁷⁵, Jouko L. Saramies⁶⁷⁶, Luis B. Sardinha⁵⁵⁹, Nizal Sarrafzadegan⁵⁶⁵, Thirunavukkarasu 1242 Sathish⁴¹⁸, Kai-Uwe Saum¹⁷⁷, Savvas Savva³⁷⁶, Mathilde Savy²⁵⁶, Norie Sawada⁶⁷⁷, Mariana 1243 Sbaraini³¹⁹, Marcia Scazufca⁶⁷⁸, Beatriz D. Schaan³¹⁹, Angelika Schaffrath Rosario⁵⁵⁶, Herman 1244 Schargrodsky⁶⁷⁹, Anja Schienkiewitz⁵⁵⁶, Karin Schindler⁶⁸⁰, Sabine Schipf⁵³⁰, Carsten O. 1245 Schmidt⁵³⁰, Ida Maria Schmidt⁶⁸¹, Andrea Schneider²⁷², Peter Schnohr⁴³, Ben Schöttker¹⁷⁷, Sara 1246 Schramm²⁹³, Stine Schramm²²⁵, Helmut Schröder²²³, Constance Schultsz⁶⁸², Matthias B. Schulze⁶⁸³, Aletta E. Schutte^{434,684}, Sylvain Sebert⁹³, Moslem Sedaghattalab³⁸², Rusidah 1247 1248 Selamat⁹, Vedrana Sember²⁸, Abhijit Sen⁶⁸⁵, Idowu O. Senbanjo⁶⁸⁶, Sadaf G. Sepanlou²⁷³, 1249 Guillermo Sequera¹³², Luis Serra-Majem⁶⁸⁷, Jennifer Servais²³², L'udmila Ševčíková⁶⁸⁸, Svetlana Shalnova¹⁰³, Teresa Shamah-Levy³⁵², Seyed Morteza Shamshirgaran⁹⁸, Coimbatore 1250 1251 Subramaniam Shanthirani⁷⁸, Maryam Sharafkhah²⁷³, Sanjib K. Sharma⁴⁷³, Jonathan E. Shaw⁵²³, 1252 Amaneh Shayanrad²⁷³, Ali Akbar Shayesteh²¹⁶, Lela Shengelia⁴⁴¹, Zumin Shi³³, Kenji Shibuya³⁶⁶, 1253 Hana Shimizu-Furusawa⁶⁸⁹, Tal Shimony⁴⁵⁶, Rahman Shiri⁶⁹⁰, Namuna Shrestha⁸⁵, Khairil Si-Ramlee⁶⁰⁴, Alfonso Siani⁶⁶⁶, Rosalynn Siantar²⁰⁹, Abla M. Sibai⁴⁰⁹, Labros S. Sidossis⁶⁹¹, Natalia Silitrari⁶⁹², Antonio M. Silva¹²³, Caroline Ramos de Moura Silva¹¹⁷, Diego Augusto Santos Silva¹¹⁹, 1254 1255 1256 Kelly S. Silva¹¹⁹, Xueling Sim^{214,501}, Mary Simon²⁰⁶, Judith Simons⁶⁹³, Leon A. Simons⁴³⁴, Agneta 1257

Sjöberg¹⁵³, Michael Sjöström^{588,776}, Natalia A. Skoblina⁵⁵⁸, Gry Skodje⁶⁹⁴, Tatyana Slazhnyova³², 1258 Jolanta Slowikowska-Hilczer¹⁰⁵, Przemysław Slusarczyk⁵⁷⁵, Liam Smeeth⁵⁵⁰, Hung-Kwan So³⁹⁵, 1259 Fernanda Cunha Soares¹¹⁷, Grzegorz Sobek¹⁰⁷, Eugène Sobngwi⁸⁸, Morten Sodemann²²⁵, Stefan 1260 Söderberg³¹⁴, Moesijanti Y. E. Soekatri⁶⁹⁵, Agustinus Soemantri^{696,776}, Reecha Sofat¹⁵⁹, Vincenzo 1261 Solfrizzi⁶⁹⁷, Mohammad Hossein Somi³⁰⁰, Emily Sonestedt³³⁸, Yi Song²², Sajid Soofi⁵², Thorkild I. 1262 A. Sørensen⁴², Elin P. Sørgjerd⁴²⁶, Charles Sossa Jérome⁶⁹⁸, Victoria E. Soto-Rojas³⁶⁴, Aïcha 1263 Soumaré⁶⁹⁹, Alfonso Sousa-Poza⁷⁰⁰, Slavica Sovic²⁷, Bente Sparboe-Nilsen⁷⁰¹, Karen 1264 Sparrenberger³¹⁹, Phoebe R. Spencer³⁹⁷, Angela Spinelli²⁶⁹, Igor Spiroski^{702,703}, Jan A. 1265 Staessen¹⁶⁷, Hanspeter Stamm⁷⁰⁴, Kaspar Staub¹⁶⁶, Bill Stavreski⁴²⁹, Jostein Steene-1266 Johannessen⁷⁶, Peter Stehle⁷⁰⁵, Aryeh D. Stein⁴¹⁸, George S. Stergiou⁴⁴⁷, Jochanan Stessman⁴²¹, 1267 Ranko Stevanović⁴⁸¹, Jutta Stieber^{272,776}, Doris Stöckl²⁷², Jakub Stokwiszewski⁷⁰⁶, Ekaterina Stoyanova⁷⁰⁷, Gareth Stratton¹⁸², Karien Stronks⁴⁹, Maria Wany Strufaldi³¹⁵, Lela Sturua⁴⁴¹, 1268 1269 Ramón Suárez-Medina²⁶⁰, Machi Suka⁷⁰⁸, Chien-An Sun⁷⁰⁹, Liang Sun⁵⁰⁹, Johan Sundström⁵¹⁰, 1270 Yn-Tz Sung³⁹⁶, Jordi Sunyer⁶⁷, Paibul Suriyawongpaisal⁸, Nabil William G. Sweis⁷¹⁰, Boyd A. 1271 Swinburn¹²⁶, Rody G. Sy⁶⁴⁶, René Charles Sylva⁷¹¹, Moyses Szklo⁴⁵¹, Lucjan Szponar⁷⁰⁶, Lorraine 1272 Tabone²³⁰, E. Shyong Tai^{214,501}, Konstantinos D. Tambalis⁴⁴⁷, Mari-Liis Tammesoo³¹², Abdonas 1273 Tamosiunas¹³⁷, Eng Joo Tan⁷¹², Xun Tang²², Maya Tanrygulyyeva⁷¹³, Frank Tanser⁷¹⁴, Yong 1274 Tao²², Mohammed Rasoul Tarawneh⁷¹⁵, Jakob Tarp⁴⁵⁰, Carolina B. Tarqui-Mamani⁶⁷⁰, Radka 1275 Taxová Braunerová⁴⁸⁹, Anne Taylor³³⁷, Julie Taylor¹⁵⁹, Félicité Tchibindat⁷¹⁶, Saskia Te Velde⁷¹⁷, 1276 William R. Tebar²²⁶, Grethe S. Tell³⁸⁵, Tania Tello¹³⁶, Yih Chung Tham²⁰⁹, K. R. Thankappan³⁴¹, 1277 Holger Theobald¹⁹⁸, Xenophon Theodoridis³³⁹, Nihal Thomas¹²⁸, Barbara Thorand²⁷², Betina H. 1278 Thuesen¹⁰, L'ubica Tichá⁶⁸⁸, Erik J. Timmermans⁷¹⁸, Dwi H. Tjandrarini⁷¹⁹, Anne Tjonneland³⁷⁷, 1279 Hanna K. Tolonen²⁰, Janne S. Tolstrup¹⁵², Murat Topbas²⁹⁴, Roman Topór-Mądry³²⁶, Liv Elin 1280 Torheim⁷⁰¹, María José Tormo⁷²⁰, Michael J. Tornaritis³⁷⁶, Maties Torrent⁷²¹, Laura Torres-1281 Collado²²³, Stefania Toselli⁷²², Giota Touloumi⁴⁴⁷, Pierre Traissac²⁵⁶, Thi Tuyet-Hanh Tran⁴⁹², Mark S. Tremblay⁷²³, Areti Triantafyllou³³⁹, Dimitrios Trichopoulos^{7,776}, Antonia Trichopoulou⁷²⁴, 1282 1283 Oanh T. H. Trinh⁵⁹⁰, Atul Trivedi⁷²⁵, Yu-Hsiang Tsao⁷²⁶, Lechaba Tshepo⁷²⁷, Maria Tsigga³⁸³, 1284 Panagiotis Tsintavis³⁸³, Shoichiro Tsugane⁶⁷⁷, John Tuitele^{728,729}, Azaliia M. Tuliakova¹⁴⁹, Marshall 1285 K. Tulloch-Reid²⁸⁹, Fikru Tullu⁷³⁰, Tomi-Pekka Tuomainen¹⁹, Jaakko Tuomilehto²⁰, Maria L. 1286 Turlev⁷³¹, Gilad Twig^{217,732}, Per Tynelius⁵⁸⁸, Evangelia Tzala¹, Themistoklis Tzotzas⁴⁴⁵, Christophe 1287 Tzourio⁶⁹⁹, Peter Ueda⁵⁸⁸, Eunice Ugel⁷³³, Flora A. M. Ukoli⁷³⁴, Hanno Ulmer⁴⁶⁴, Belgin Unal²⁹⁵, 1288 Zhamyila Usupova⁵⁵, Hannu M. T. Uusitalo⁷³⁵, Nalan Uysal⁷³⁶, Justina Vaitkeviciute¹³⁷, Gonzalo 1289 Valdivia¹³⁸, Susana Vale⁷³⁷, Damaskini Valvi⁷³⁸, Rob M. van Dam⁷³⁹, Bert-Jan van den Born⁴⁹, 1290 Johan Van der Heyden²⁵¹, Yvonne T. van der Schouw³³³, Koen Van Herck¹⁷², Wendy Van Lippevelde¹⁷², Hoang Van Minh⁴⁹², Natasja M. Van Schoor⁴⁰⁸, Irene G. M. van Valkengoed⁴⁹, Dirk 1291 1292 Vanderschueren¹⁶⁷, Diego Vanuzzo⁶²⁴, Anette Varbo^{43,42}, Gregorio Varela-Moreiras⁷⁴⁰, Luz 1293 Nayibe Vargas²³⁶, Patricia Varona-Pérez²⁶⁰, Senthil K. Vasan²³⁵, Daniel G. Vasques³¹⁹, Tomas 1294 Vega⁵¹⁶, Toomas Veidebaum³⁴⁰, Gustavo Velasquez-Melendez³³², Biruta Velika⁶³², Maïté 1295 Verloigne¹⁷², Giovanni Veronesi³⁰⁸, W. M. Monique Verschuren¹⁵⁵, Cesar G. Victora⁹⁰, Giovanni 1296 Viegi⁷⁴¹, Lucie Viet¹⁵⁵, Frøydis N. Vik¹³³, Monica Vilar⁷⁴², Salvador Villalpando³⁵², Jesus Vioque⁷⁴³, 1297 Jyrki K. Virtanen¹⁹, Sophie Visvikis-Siest⁷⁴⁴, Bharathi Viswanathan¹⁶⁸, Mihaela Vladulescu⁷⁴⁵, 1298 Tiina Vlasoff⁷⁴⁶, Dorja Vocanec²⁷, Peter Vollenweider^{534,535}, Henry Völzke⁵³⁰, Ari Voutilainen¹⁹, 1299 Martine Vrijheid⁶⁷, Tanja G. M. Vrijkotte^{252,49}, Alisha N. Wade⁷⁴⁷, Thomas Waldhör⁶⁸⁰, Janette 1300 Walton¹⁸⁵, Elvis O. A. Wambiya⁴⁹¹, Wan Mohamad Wan Bebakar³¹³, Wan Nazaimoon Wan 1301 Mohamud⁷⁴⁸, Rildo de Souza Wanderley Júnior¹¹⁷, Ming-Dong Wang⁶⁵⁵, Ningli Wang³⁶⁹, Qian 1302 Wang⁷⁴⁹, Xiangjun Wang⁷⁵⁰, Ya Xing Wang³⁶⁸, Ying-Wei Wang⁷⁵¹, S. Goya Wannamethee¹⁵⁹, 1303 Nicholas Wareham⁴⁶¹, Adelheid Weber¹³⁰, Karen Webster-Kerr⁷⁵², Niels Wedderkopp²²⁵, Daniel 1304 Weghuber⁵⁴¹, Wenbin Wei³⁶⁸, Aneta Weres¹⁰⁷, Bo Werner⁷⁵³, Leo D. Westbury²³⁵, Peter H. Whincup⁷⁵⁴, Kremlin Wickramasinghe¹⁵, Kurt Widhalm⁶⁸⁰, Indah S. Widyahening⁷⁵⁵, Andrzej Więcek²²⁷, Philipp S. Wild¹⁴⁰, Rainford J. Wilks²⁸⁹, Johann Willeit⁴⁶⁴, Peter Willeit⁴⁶⁴, Julianne 1305 1306 1307 Williams¹⁵, Tom Wilsgaard⁵⁴⁵, Rusek Wojciech⁷⁵⁶, Bogdan Wojtyniak⁷⁰⁶, Kathrin Wolf²⁷², Roy A. 1308

Wong-McClure³⁰, Andrew Wong¹⁵⁹, Emily B. Wong³⁸⁰, Jyh Eiin Wong⁶²⁹, Tien Yin Wong²⁰⁷, Jean 1309 Woo³⁹⁶, Mark Woodward^{434,1}, Frederick C. Wu⁵⁹⁶, Hon-Yen Wu⁷⁵⁷, Jianfeng Wu¹⁴⁴, Li Juan Wu³⁶⁸, 1310 Shouling Wu²¹³, Justyna Wyszyńska¹⁰⁷, Haiquan Xu⁷⁵⁸, Liang Xu⁷⁵⁹, Nor Azwany Yaacob³¹³, 1311 Uruwan Yamborisut⁸, Weili Yan⁷⁶⁰, Ling Yang⁴⁴, Xiaoguang Yang³⁸⁸, Yang Yang⁷⁵⁰, Nazan 1312 Yardim²⁰³, Tabara Yasuharu³²², Martha Yépez García⁷⁴², Panayiotis K. Yiallouros⁷⁶¹, Agneta 1313 Yngve⁵¹⁰, Moein Yoosefi¹², Akihiro Yoshihara⁷⁶², Qi Sheng You³⁶⁸, San-Lin You⁷⁰⁹, Novie O. Younger-Coleman²⁸⁹, Yu-Ling Yu¹⁶⁷, Yunjiang Yu⁷⁶³, Safiah Md Yusof⁷⁶⁴, Ahmad Faudzi Yusoff⁹, 1314 1315 Luciana Zaccagni³⁶¹, Vassilis Zafiropulos⁷⁶⁵, Ahmad A. Zainuddin⁹, Seyed Rasoul Zakavi²⁹⁷, 1316 Farhad Zamani⁷⁶⁶, Sabina Zambon⁵²⁹, Antonis Zampelas⁵²⁴, Hana Zamrazilová⁴⁸⁹, Maria Elisa 1317 Zapata¹⁹⁹, Abdul Hamid Zargar⁷⁶⁷, Ko Ko Zaw⁴⁹⁹, Ayman A. Zayed⁷¹⁰, Tomasz Zdrojewski⁶⁶⁷, 1318 Magdalena Żegleń⁷⁶⁸, Kristyna Żejglicova¹⁹⁵, Tajana Żeljkovic Vrkic¹¹¹, Yi Żeng^{22,769}, Luxia Zhang⁷⁷⁰, Zhen-Yu Zhang¹⁶⁷, Dong Zhao⁵¹¹, Ming-Hui Zhao⁷⁷⁰, Wenhua Zhao³⁸⁸, Yanitsa V. 1319 1320 Zhecheva⁴¹⁹, Shiqi Zhen⁷⁷¹, Wei Zheng¹⁸⁸, Yingfeng Zheng²⁷⁰, Bekbolat Zholdin⁷⁷², Maigeng Zhou³⁸⁸, Dan Zhu⁷⁷³, Marie Zins^{342,343}, Emanuel Zitt²³⁴, Yanina Zocalo¹⁴⁶, Nada Zoghlami⁸¹, Julio 1321 1322 Zuñiga Cisneros⁵⁶⁸, Monika Zuziak⁷⁷⁴, Zulfiqar A. Bhutta^{416,52}, Robert E. Black⁷⁷⁵, Majid Ezzati^{1,41} 1323

1324 *These authors contributed equally to the work.

1325

1326 Affiliations

¹Imperial College London, London, UK. ²McGill University, Montreal, Québec, Canada. 1327 ³University of Essex, Colchester, UK. ⁴University of California Berkeley, Berkeley, CA, USA. 1328 ⁵University of Kent, Canterbury, UK. ⁶World Health Organization, Geneva, Switzerland. ⁷Harvard 1329 T. H. Chan School of Public Health, Boston, MA, USA. ⁸Mahidol University, Nakhon Pathom, 1330 Thailand. ⁹Ministry of Health, Kuala Lumpur, Malaysia. ¹⁰Bispebjerg and Frederiksberg Hospital, 1331 Copenhagen, Denmark. ¹¹Victor Babes University of Medicine and Pharmacy, Timisoara, 1332 Romania. ¹²Non-Communicable Diseases Research Center, Tehran, Iran. ¹³Swiss Tropical and 1333 Public Health Institute, Basel, Switzerland. ¹⁴University of Basel, Basel, Switzerland. ¹⁵World 1334 Health Organization Regional Office for Europe, Copenhagen, Denmark. ¹⁶National Institutes of 1335 Biomedical Innovation, Health and Nutrition, Tokyo, Japan. ¹⁷South African Medical Research 1336 Council, Cape Town, South Africa. ¹⁸Seoul National University College of Medicine, Seoul, 1337 Republic of Korea. ¹⁹University of Eastern Finland, Kuopio, Finland. ²⁰Finnish Institute for Health 1338 1339 and Welfare, Helsinki, Finland. ²¹ICMR - National Institute of Nutrition, Hyderabad, India. ²²Peking University, Beijing, China. ²³Universidad de San Carlos, Guatemala City, Guatemala. ²⁴BRAC 1340 James P Grant School of Public Health, Dhaka, Bangladesh. ²⁵University of Coimbra, Coimbra, 1341 Portugal. ²⁶University of Otago, Dunedin, New Zealand. ²⁷University of Zagreb, Zagreb, Croatia. 1342 ²⁸University of Ljubljana, Ljubljana, Slovenia. ²⁹GroundWork, Geneva, Switzerland. ³⁰Caja 1343 Costarricense de Seguro Social, San José, Costa Rica. ³¹Al-Quds University, East Jerusalem, 1344 State of Palestine. ³²National Center of Public Health, Astana, Kazakhstan. ³³Qatar University, 1345 Doha, Qatar. ³⁴Ministry of Health and Social Protection, Dushanbe, Tajikistan. ³⁵Birzeit University, 1346 Birzeit, State of Palestine. ³⁶Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria. 1347 ³⁷Instituto Mexicano del Seguro Social, Mexico City, Mexico. ³⁸Qassim University, Unaizah, Saudi 1348 1349 Arabia. ³⁹RehaKlinika, Rzeszów, Poland. ⁴⁰Flinders University, Adelaide, South Australia, Australia. ⁴¹University of Ghana, Accra, Ghana. ⁴²University of Copenhagen, Copenhagen, 1350 Denmark. ⁴³Copenhagen University Hospital, Copenhagen, Denmark. ⁴⁴University of Oxford, 1351 Oxford, UK. ⁴⁵Food and Nutrition Research Institute, Taguig, The Philippines. ⁴⁶Urmia University 1352 of Medical Sciences, Urmia, Iran. ⁴⁷Ibn Tofail University, Kénitra, Morocco. ⁴⁸Instituto Nacional de 1353 Ciencias Médicas y Nutrición, Mexico City, Mexico.⁴⁹University of Amsterdam, Amsterdam, The 1354 Netherlands. ⁵⁰Modeling in Health Research Center, Shahrekord, Iran. ⁵¹Shahid Sadoughi 1355

University of Medical Sciences, Yazd, Iran. ⁵²The Aga Khan University, Karachi, Pakistan. 1356 ⁵³University of Oslo, Oslo, Norway. ⁵⁴Leibniz Institute for Prevention Research and Epidemiology 1357 1358 - BIPS, Bremen, Germany. ⁵⁵Republican Center for Health Promotion, Bishkek, Kyrgyzstan. ⁵⁶National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan. ⁵⁷Princess Nourah 1359 bint Abdulrahman University, Rivadh, Saudi Arabia. ⁵⁸Kuwait Institute for Scientific Research, 1360 Kuwait City, Kuwait. ⁵⁹King Abdulaziz University, Jeddah, Saudi Arabia. ⁶⁰The Hashemite 1361 University, Zarga, Jordan. ⁶¹Ministry of Health, Kuwait City, Kuwait. ⁶²Dasman Diabetes Institute, 1362 Kuwait City, Kuwait. ⁶³Aldara Hospital and Medical Center, Riyadh, Saudi Arabia. ⁶⁴King Abdullah 1363 International Medical Research Center, Riyadh, Saudi Arabia. 65Universidade Federal da 1364 Integração Latino-Americana, Foz do Iguaçu, Brazil. ⁶⁶Luxembourg Institute of Health, Strassen, 1365 Luxembourg. ⁶⁷Barcelona Institute for Global Health CIBERESP, Barcelona, Spain. ⁶⁸World 1366 1367 Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt. ⁶⁹Bombay Hospital and Medical Research Centre, Mumbai, India. ⁷⁰Departamento de Salud del Gobierno 1368 Vasco, San Sebastián, Spain. ⁷¹Ghana Health Service, Kintampo, Ghana. ⁷²UMR CNRS-MNHN 1369 7206, Paris, France. ⁷³University of Lille, Lille, France. ⁷⁴Lille University Hospital, Lille, France. 1370 ⁷⁵Western Norway University of Applied Sciences, Sogndal, Norway. ⁷⁶Norwegian School of Sport 1371 Sciences, Oslo, Norway. ⁷⁷University of Thessaly, Trikala, Greece. ⁷⁸Madras Diabetes Research 1372 Foundation, Chennai, India. ⁷⁹Zahedan University of Medical Sciences, Zahedan, Iran. 1373 ⁸⁰Yekaterinburg State Medical Academy, Yekaterinburg, Russia. ⁸¹National Institute of Public 1374 Health, Tunis, Tunisia. ⁸²Institute of Public Health of the University of Porto, Porto, Portugal. 1375 ⁸³Norwegian Institute of Public Health, Oslo, Norway. ⁸⁴University of Massachusetts Amherst, 1376 Amherst, MA, USA. ⁸⁵Public Health Promotion and Development Organization, Kathmandu, 1377 1378 Nepal. ⁸⁶Haramaya University, Dire Dawa, Ethiopia. ⁸⁷University of Iceland, Reykjavik, Iceland. ⁸⁸University of Yaoundé 1, Yaoundé, Cameroon. ⁸⁹Asfendiyarov Kazakh National Medical 1379 University, Almaty, Kazakhstan. 90 Federal University of Pelotas, Pelotas, Brazil. 91 University of 1380 Medicine 1, Yangon, Myanmar. ⁹²Oulu University Hospital, Oulu, Finland. ⁹³University of Oulu, 1381 Oulu, Finland. ⁹⁴Regional Authority of Public Health, Banska Bystrica, Slovakia. ⁹⁵Tel Aviv 1382 University. Tel Aviv, Israel. ⁹⁶Hebrew University of Jerusalem, Jerusalem, Israel. ⁹⁷University of 1383 Porto Medical School, Porto, Portugal. ⁹⁸Neyshabur University of Medical Sciences, Neyshabur, 1384 Iran. ⁹⁹Research Institute for Endocrine Sciences, Tehran, Iran. ¹⁰⁰Indian Council of Medical 1385 1386 Research, New Delhi, India. ¹⁰¹National Institute of Public Health, Copenhagen, Denmark. ¹⁰²National Institute of Pharmacy and Nutrition, Budapest, Hungary. ¹⁰³National Medical Research 1387 Centre for Therapy and Preventive Medicine, Moscow, Russia. ¹⁰⁴University of Science and 1388 Technology, Sana'a, Yemen. ¹⁰⁵Medical University of Lodz, Lodz, Poland. ¹⁰⁶Universidad 1389 Autónoma de Madrid CIBERESP, Madrid, Spain. ¹⁰⁷University of Rzeszów, Rzeszów, Poland. 1390 ¹⁰⁸University of Palermo, Palermo, Italy. ¹⁰⁹Federal Institute of Education, Science and 1391 Technology of Ceara, Ceara, Brazil. ¹¹⁰University of Miami, Miami, FL, USA. ¹¹¹University Hospital 1392 Center Zagreb, Zagreb, Croatia, ¹¹²Mohammed V University, Rabat, Morocco, ¹¹³Unidad de 1393 1394 Cirugia Cardiovascular, Guatemala City, Guatemala.¹¹⁴Universidad del Valle, Cali, Colombia. ¹¹⁵National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal. ¹¹⁶NOVA University Lisbon, 1395 Lisbon, Portugal. ¹¹⁷University of Pernambuco, Recife, Brazil. ¹¹⁸Bagai Institute of Diabetology 1396 and Endocrinology, Karachi, Pakistan. ¹¹⁹Federal University of Santa Catarina, Florianópolis, 1397 Brazil. ¹²⁰Dalhousie University, Halifax, Nova Scotia, Canada. ¹²¹Jordan University of Science and 1398 Technology, Irbid, Jordan.¹²²Universidade Federal de Ouro Preto, Ouro Preto, Brazil.¹²³Federal 1399 University of Maranhão, São Luís, Brazil. ¹²⁴University of Sydney, Sydney, New South Wales, 1400 Australia. ¹²⁵Cliniques Universitaires de Kinshasa, Kinshasa, DR Congo. ¹²⁶University of 1401 Auckland, Auckland, New Zealand. ¹²⁷University College Dublin, Dublin, Ireland. ¹²⁸Christian 1402 Medical College, Vellore, India.¹²⁹University Tunis El Manar, Tunis, Tunisia.¹³⁰Federal Ministry 1403 of Social Affairs, Health, Care and Consumer Protection, Vienna, Austria.¹³¹Cafam University 1404 1405 Foundation, Bogotá, Colombia. ¹³²Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay. ¹³³University of Agder, Kristiansand, Norway. ¹³⁴Addis Continental Institute of Public 1406

Health, Addis Ababa, Ethiopia. ¹³⁵Kazakh National Medical University, Almaty, Kazakhstan. 1407 ¹³⁶Universidad Peruana Cayetano Heredia, Lima, Peru. ¹³⁷Lithuanian University of Health 1408 Sciences, Kaunas, Lithuania. ¹³⁸Pontificia Universidad Católica de Chile, Santiago, Chile. 1409 ¹³⁹University of São Paulo, São Paulo, Brazil. ¹⁴⁰Johannes Gutenberg University, Mainz, 1410 Germany. ¹⁴¹B J Medical College, Ahmedabad, India. ¹⁴²Chirayu Medical College, New Delhi, 1411 India.¹⁴³Sunder Lal Jain Hospital, Delhi, India.¹⁴⁴Shandong University of Traditional Chinese 1412 Medicine, Jinan, China. ¹⁴⁵Shanghai Jiao-Tong University School of Medicine, Shanghai, China. 1413 ¹⁴⁶Universidad de la República, Montevideo, Uruguay. ¹⁴⁷University of Strasbourg, Strasbourg, 1414 France. ¹⁴⁸Institute of Medical Research and Medicinal Plant Studies, Yaoundé, Cameroon. ¹⁴⁹Ufa 1415 Eye Research Institute, Ufa, Russia. ¹⁵⁰Nepal Health Research Council, Kathmandu, Nepal. 1416 ¹⁵¹University of Montenegro, Niksic, Montenegro. ¹⁵²University of Southern Denmark, Copenhagen, Denmark. ¹⁵³University of Gothenburg, Gothenburg, Sweden. ¹⁵⁴Universidade 1417 1418 Federal do Rio de Janeiro, Rio de Janeiro, Brazil. ¹⁵⁵National Institute for Public Health and the 1419 Environment, Bilthoven, The Netherlands. ¹⁵⁶University of Haifa, Haifa, Israel. ¹⁵⁷Ministry of 1420 Health, Ramat Gan, Israel. ¹⁵⁸University of Turin, Turin, Italy. ¹⁵⁹University College London, 1421 London, UK. ¹⁶⁰Liverpool John Moores University, Liverpool, UK. ¹⁶¹Nanyang Technological 1422 University, Singapore, Singapore. ¹⁶²National Medical Research Center for Endocrinology, 1423 Moscow, Russia. ¹⁶³Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, 1424 Argentina. ¹⁶⁴IRCCS Neuromed, Pozzilli, Italy. ¹⁶⁵Toulouse University School of Medicine, 1425 Toulouse, France. ¹⁶⁶University of Zurich, Zurich, Switzerland. ¹⁶⁷KU Leuven, Leuven, Belgium. 1426 ¹⁶⁸Ministry of Health, Victoria, Seychelles. ¹⁶⁹Unisanté, Lausanne, Switzerland. ¹⁷⁰World Health 1427 Organization Country Office in Tajikistan, Dushanbe, Tajikistan. ¹⁷¹Flemish Agency for Care and 1428 1429 Health, Brussels, Belgium. ¹⁷²Ghent University, Ghent, Belgium. ¹⁷³FrieslandCampina, Amersfoort, The Netherlands. ¹⁷⁴Universidad Central de Venezuela, Caracas, Venezuela. 1430 ¹⁷⁵Bielefeld University, Bielefeld, Germany. ¹⁷⁶World Health Organization Athens Quality of Care 1431 Office, Athens, Greece. ¹⁷⁷German Cancer Research Center, Heidelberg, Germany. ¹⁷⁸The Fred 1432 Hollows Foundation, Auckland, New Zealand. ¹⁷⁹University of the Andes, Mérida, Venezuela. 1433 ¹⁸⁰Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. ¹⁸¹Instituto Politécnico 1434 de Lisboa, Lisbon, Portugal. ¹⁸²Swansea University, Swansea, UK. ¹⁸³University College 1435 Copenhagen, Copenhagen, Denmark. ¹⁸⁴Institute of Public Health, Tirana, Albania. ¹⁸⁵Munster 1436 1437 Technological University, Cork, Ireland. ¹⁸⁶Universidad de La Laguna, Santa Cruz de Tenerife, Spain. ¹⁸⁷University of Malta, Msida, Malta. ¹⁸⁸Vanderbilt University, Nashville, TN, USA. ¹⁸⁹Pan 1438 American Health Organization, Washington, DC, USA. ¹⁹⁰Ministry of Health, Tongatapu, Tonga. 1439 ¹⁹¹Canadian Fitness and Lifestyle Research Institute, Ottawa, Ontario, Canada. ¹⁹²Hospital Santa 1440 Maria, Lisbon, Portugal. ¹⁹³Istanbul University - Cerrahpasa, Istanbul, Turkey. ¹⁹⁴Universidade 1441 Federal de Juiz de Fora, Juiz de Fora, Brazil.¹⁹⁵National Institute of Public Health, Prague, Czech 1442 Republic. ¹⁹⁶Gaetano Fucito Hospital, Mercato San Severino, Italy. ¹⁹⁷University of Groningen, 1443 Groningen. The Netherlands. ¹⁹⁸Karolinska Institutet. Huddinge. Sweden. ¹⁹⁹Centro de Estudios 1444 Sobre Nutrición Infantil, Buenos Aires, Argentina. ²⁰⁰University of Porto, Porto, Portugal. 1445 ²⁰¹University of Zaragoza, Zaragoza, Spain. ²⁰²Santiago de Compostela University, Santiago 1446 de Compostela, Spain. ²⁰³Ministry of Health, Ankara, Turkey. ²⁰⁴Council for Agricultural Research 1447 and Economics, Rome, Italy. ²⁰⁵Federal University of Rio Grande, Rio Grande, Brazil. ²⁰⁶India 1448 Diabetes Research Foundation, Chennai, India. 207 Duke-NUS Medical School, Singapore, 1449 Singapore. ²⁰⁸ICMR - National Institute of Medical Statistics, New Delhi, India. ²⁰⁹Singapore Eye 1450 Research Institute, Singapore, Singapore.²¹⁰Academia Sinica, Taipei, Taiwan.²¹¹Capital Institute 1451 of Pediatrics, Beijing, China. ²¹²Xiangtan University, Xiangtan, China. ²¹³Kailuan General Hospital, 1452 Tangshan, China. ²¹⁴National University of Singapore, Singapore, Singapore. ²¹⁵US Centers for 1453 Disease Control and Prevention, Atlanta, GA, USA.²¹⁶Ahvaz Jundishapur University of Medical 1454 Sciences, Ahvaz, Iran.²¹⁷The Gertner Institute for Epidemiology and Health Policy Research, 1455 Ramat Gan, Israel. ²¹⁸National Centre of Public Health and Analyses, Sofia, Bulgaria. 1456 ²¹⁹Amsterdam UMC Public Health Research Institute, Amsterdam, The Netherlands. 1457

²²⁰Universidad de Costa Rica, San José, Costa Rica. ²²¹University of Fribourg, Fribourg, 1458 Switzerland. ²²²National Taiwan University, Taipei, Taiwan. ²²³CIBERESP, Madrid, Spain. 1459 ²²⁴Seoul National University, Seoul, Republic of Korea. ²²⁵University of Southern Denmark, 1460 Odense, Denmark. ²²⁶Universidade Estadual Paulista, Presidente Prudente, Brazil. ²²⁷Medical 1461 University of Silesia, Katowice, Poland. ²²⁸Charles University, Prague, Czech Republic. 1462 ²²⁹Thomayer Hospital, Prague, Czech Republic. ²³⁰Primary Health Care, Floriana, Malta. 1463 ²³¹University of Salerno, Fisciano, Italy. ²³²Statistics Canada, Ottawa, Ontario, Canada. ²³³Alicante 1464 Institute for Health and Biomedical Research, Alicante, Spain.²³⁴Agency for Preventive and Social 1465 Medicine, Bregenz, Austria. 235University of Southampton, Southampton, UK. 236Pontificia 1466 Universidad Javeriana, Bogotá, Colombia.²³⁷Institut Pasteur de Lille, Lille, France.²³⁸Malawi 1467 Epidemiology and Intervention Research Unit, Lilongwe, Malawi. ²³⁹CIBEROBN, Madrid, Spain. 1468 ²⁴⁰Hungarian University of Sports Science, Budapest, Hungary. ²⁴¹University of Debrecen, 1469 1470 Debrecen, Hungary. ²⁴²National Institute of Public Health, Bucharest, Romania. ²⁴³University of Medicine and Pharmacy, Bucharest, Romania.²⁴⁴Universidade Federal do Rio Grande do Norte, 1471 Natal, Brazil.²⁴⁵National Research Council, Reggio Calabria, Italy.²⁴⁶Eftimie Murgu University 1472 Resita, Resita, Romania. ²⁴⁷Eduardo Mondlane University, Maputo, Mozambique. ²⁴⁸Indian 1473 Statistical Institute, Kolkata, India. 249 Tabriz Health Services Management Research Center, 1474 Tabriz, Iran. ²⁵⁰Geneva University Hospitals, Geneva, Switzerland. ²⁵¹Sciensano, Brussels, 1475 Belgium. ²⁵²University Medical Centers, Amsterdam, The Netherlands. ²⁵³National Research Centre for Preventive Medicine, Moscow, Russia. ²⁵⁴Innovating Health International, Port-au-1476 1477 Prince, Haiti. ²⁵⁵University of Montreal, Montreal, Québec, Canada. ²⁵⁶French National Research 1478 Institute for Sustainable Development, Montpellier, France. ²⁵⁷French Public Health Agency, St 1479 1480 Maurice, France. ²⁵⁸Mediterranea Cardiocentro, Naples, Italy. ²⁵⁹Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil. ²⁶⁰National Institute of Hygiene, Epidemiology and Microbiology, 1481 Havana, Cuba. ²⁶¹National Council of Scientific and Technical Research, Buenos Aires, 1482 Argentina.²⁶²Servicio Canario de la Salud del Gobierno de Canarias, Santa Cruz de Tenerife, 1483 Spain. ²⁶³Consejería de Salud del Gobierno de La Rioja, Logroño, Spain. ²⁶⁴Ministry of Health and 1484 Medical Education, Tehran, Iran. ²⁶⁵University of Novi Sad, Novi Sad, Serbia. ²⁶⁶National Institute 1485 of Nutrition, Hanoi, Vietnam. ²⁶⁷University of Queensland, Brisbane, Queensland, Australia. 1486 ²⁶⁸Instituto de Investigación Nutricional, Lima, Peru. ²⁶⁹Istituto Superiore di Sanità, Rome, Italy. 1487 ²⁷⁰Sun Yat-sen University, Guangzhou, China. ²⁷¹Universidad de Cuenca, Cuenca, Ecuador. 1488 ²⁷²Helmholtz Zentrum München, Munich, Germany. ²⁷³Tehran University of Medical Sciences, 1489 Tehran. Iran. ²⁷⁴Ministère de la Santé et de l'Hygiène Publique, Abidjan, Côte d'Ivoire. 1490 1491 ²⁷⁵University Hospital Düsseldorf, Düsseldorf, Germany. ²⁷⁶National Institute of Cardiology, Warsaw, Poland. ²⁷⁷Beijing Center for Disease Prevention and Control, Beijing, China. ²⁷⁸IRL 1492 1493 3189 ESS, Marseille, France. ²⁷⁹Scuola Superiore Sant'Anna, Pisa, Italy. ²⁸⁰Al-Farabi Kazakh National University, Almaty, Kazakhstan. ²⁸¹Semey Medical University, Semey, Kazakhstan. 1494 ²⁸²University of Latvia, Riga, Latvia, ²⁸³Ministry of Health and Medical Services, Gizo, Solomon 1495 Islands. ²⁸⁴Hormozgan University of Medical Sciences, Bandar Abbas, Iran. ²⁸⁵University of Benin, 1496 Benin City, Nigeria. ²⁸⁶University of Skövde, Skövde, Sweden. ²⁸⁷Ministry of Health, Rabat, 1497 Morocco. ²⁸⁸National Institute of Nutrition and Food Technology, Tunis, Tunisia. ²⁸⁹The University 1498 of the West Indies, Kingston, Jamaica. ²⁹⁰Ministry of Health, Jerusalem, Israel. ²⁹¹University of 1499 California Davis, Davis, CA, USA. 292University of Stellenbosch, Cape Town, South Africa. 1500 ²⁹³University of Duisburg-Essen, Essen, Germany. ²⁹⁴Karadeniz Technical University, Trabzon, 1501 Turkey. ²⁹⁵Dokuz Eylul University, Izmir, Turkey. ²⁹⁶University of Helsinki, Helsinki, Finland. 1502 ²⁹⁷Mashhad University of Medical Sciences, Mashhad, Iran. ²⁹⁸Rafsanjan University of Medical 1503 Sciences, Rafsanjan, Iran. ²⁹⁹Queen's University Belfast, Belfast, UK. ³⁰⁰Tabriz University of 1504 Medical Sciences, Tabriz, Iran. ³⁰¹Fasa University of Medical Sciences, Fasa, Iran. ³⁰²Shiraz 1505 University of Medical Sciences, Shiraz, Iran. ³⁰³Baqai Medical University, Karachi, Pakistan. 1506 ³⁰⁴Centro de Salud Villanueva Norte, Badajoz, Spain. ³⁰⁵Hospital Don Benito-Villanueva de la 1507 Serena, Badajoz, Spain. ³⁰⁶Ministry of Health, Buenos Aires, Argentina. ³⁰⁷Universidad de 1508

Santiago de Chile, Santiago, Chile. ³⁰⁸University of Insubria, Varese, Italy. ³⁰⁹Federal University 1509 of Alagoas, Alagoas, Brazil. ³¹⁰Institute of Mother and Child, Warsaw, Poland. ³¹¹Hospital Infantil 1510 Sabará, São Paulo, Brazil. ³¹²University of Tartu, Tartu, Estonia. ³¹³Universiti Sains Malaysia, 1511 Kelantan, Malaysia. ³¹⁴Umeå University, Umeå, Sweden. ³¹⁵Federal University of São Paulo, São 1512 Paulo, Brazil. ³¹⁶University Clinical Centre Ljubljana, Ljubljana, Slovenia. ³¹⁷Hospital Universitario 1513 Son Espases, Palma, Spain. ³¹⁸Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil. 1514 ³¹⁹Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. ³²⁰Universitas Sumatera 1515 Utara, Medan, Indonesia. ³²¹Kindai University, Osaka-Sayama, Japan. ³²²Kyoto University, Kyoto, 1516 Japan. ³²³I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine. ³²⁴Medical 1517 University of Warsaw, Warsaw, Poland. ³²⁵Consejería de Sanidad del Gobierno de Cantabria, 1518 Santander, Spain. ³²⁶ Jagiellonian University Medical College, Kraków, Poland. ³²⁷ Ministero della 1519 Salute DG Prevenzione Sanitaria, Rome, Italy. ³²⁸University of Catania, Catania, Italy. ³²⁹Agencia 1520 Española de Seguridad Alimentaria y Nutrición, Madrid, Spain. ³³⁰Africa Health Research 1521 Institute, Mtubatuba, South Africa. ³³¹Geneva University Medical School, Geneva, Switzerland. 1522 ³³²Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. ³³³Utrecht University, Utrecht, 1523 The Netherlands. ³³⁴Wageningen University, Wageningen, The Netherlands. ³³⁵Medical Research 1524 Foundation, Chennai, India. ³³⁶Kurdistan University of Medical Sciences, Sanandaj, Iran. 1525 ³³⁷University of Adelaide, Adelaide, South Australia, Australia. ³³⁸Lund University, Lund, Sweden. ³³⁹Aristotle University of Thessaloniki, Thessaloniki, Greece. ³⁴⁰National Institute for Health 1526 1527 Development, Tallinn, Estonia. ³⁴¹Central University of Kerala, Kasaragod, India. ³⁴²Institut 1528 National de la Santé et de la Recherche Médicale, Paris, France. ³⁴³Paris University, Paris, 1529 France. ³⁴⁴Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, Murcia, Spain. 1530 1531 ³⁴⁵Gasol Foundation, Sant Boi de Llobregat, Spain. ³⁴⁶University of Lleida, Sant Boi de Llobregat, Spain. ³⁴⁷PASs Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland. 1532 ³⁴⁸University Agostinho Neto, Luanda, Angola. ³⁴⁹Kansas State University, Manhattan, KS, USA. 1533 ³⁵⁰Universidad Politécnica de Madrid, Madrid, Spain. ³⁵¹International Clinical Research Center, 1534 Brno, Czech Republic. ³⁵²National Institute of Public Health, Cuernavaca, Mexico. ³⁵³Centro de 1535 Estudios en Diabetes A.C., Mexico City, Mexico. ³⁵⁴Universidad Autónoma de Santo Domingo, 1536 Santo Domingo, Dominican Republic. 355 Ministry of Health, Lisbon, Portugal. 356 Institute for 1537 Clinical and Experimental Medicine, Prague, Czech Republic. ³⁵⁷Children's Memorial Health 1538 1539 Institute, Warsaw, Poland. ³⁵⁸University of Thessaly, Larissa, Greece. ³⁵⁹National Center of Cardiovascular Diseases, Beijing, China. ³⁶⁰International Life Science Institute, Buenos Aires, 1540 Argentina. ³⁶¹University of Ferrara, Ferrara, Italy. ³⁶²Authority Sanitaria San Marino, San Marino, San Marino, San Marino. ³⁶³Icelandic Heart Association, Kopavogur, Iceland. ³⁶⁴Universidad Icesi, Cali, 1541 1542 Colombia. ³⁶⁵State University of Montes Claros, Montes Claros, Brazil. ³⁶⁶King's College London, 1543 1544 London, UK. ³⁶⁷International Agency for Research on Cancer, Lyon, France. ³⁶⁸Capital Medical University, Beijing, China. ³⁶⁹Capital Medical University Beijing Tongren Hospital, Beijing, China. 1545 ³⁷⁰Healis-Sekhsaria Institute for Public Health, Navi Mumbai, India, ³⁷¹Eternal Heart Care Centre 1546 and Research Institute, Jaipur, India. 372University of Ibadan, Ibadan, Nigeria. 373Institute for 1547 Clinical Effectiveness and Health Policy, Buenos Aires, Argentina. ³⁷⁴National Health Insurance 1548 Service, Wonju, Republic of Korea. ³⁷⁵Prevention of Metabolic Disorders Research Center, 1549 Tehran, Iran. ³⁷⁶Research and Education Institute of Child Health, Nicosia, Cyprus. ³⁷⁷Danish 1550 Cancer Society Research Center, Copenhagen, Denmark. ³⁷⁸The University of the West Indies, 1551 Cave Hill, Barbados. ³⁷⁹Kermanshah University of Medical Sciences, Kermanshah, Iran. ³⁸⁰Africa 1552 Health Research Institute, Durban, South Africa. ³⁸¹Federal University of Pernambuco, Recife, 1553 Brazil. ³⁸²Yasuj University of Medical Sciences, Yasuj, Iran. ³⁸³International Hellenic University, 1554 Thessaloniki, Greece. ³⁸⁴Kyushu University, Fukuoka, Japan. ³⁸⁵University of Bergen, Bergen, 1555 Norway. ³⁸⁶Tulane University, New Orleans, LA, USA. ³⁸⁷National Research Institute for Health 1556 and Family Planning, Beijing, China. ³⁸⁸Chinese Center for Disease Control and Prevention, 1557 Beijing, China. ³⁸⁹University of Pécs, Pécs, Hungary. ³⁹⁰Danish Health Authority, Copenhagen, 1558 Denmark. ³⁹¹Joep Lange Institute, Amsterdam, The Netherlands. ³⁹²Universidad Autónoma de 1559

Bucaramanga, Bucaramanga, Colombia. ³⁹³ETH Zurich, Zurich, Switzerland. ³⁹⁴Chronic Diseases 1560 Research Center, Tehran, Iran. ³⁹⁵University of Hong Kong, Hong Kong, China. ³⁹⁶The Chinese 1561 University of Hong Kong, Hong Kong, China. ³⁹⁷University of Western Australia, Perth, Western 1562 Australia, Australia. ³⁹⁸Universidade Federal do Paraná, Curitiba, Brazil. ³⁹⁹Shahid Beheshti 1563 University of Medical Sciences, Tehran, Iran. ⁴⁰⁰Gasol Foundation, Barcelona, Spain. 1564 ⁴⁰¹University Ramon Llull, Sant Boi de Llobregat, Spain. ⁴⁰²Kingston Health Sciences Centre, 1565 Kingston, Ontario, Canada.⁴⁰³Fundación Oftalmológica de Santander, Bucaramanga, Colombia. 1566 ⁴⁰⁴University Oran 1, Oran, Algeria. ⁴⁰⁵Independent Public Health Specialist, Nay Pyi Taw, 1567 Myanmar. ⁴⁰⁶Ministry of Health and Sports, Nay Pyi Taw, Myanmar. ⁴⁰⁷Santé publique France, 1568 Saint-Maurice, France. ⁴⁰⁸VU University Medical Center, Amsterdam, The Netherlands. 1569 ⁴⁰⁹American University of Beirut, Beirut, Lebanon. ⁴¹⁰Cairo University, Cairo, Egypt. ⁴¹¹Erasmus 1570 Medical Center Rotterdam, Rotterdam, The Netherlands. ⁴¹²University of Valencia, Valencia, 1571 Spain. ⁴¹³Medical University Varna, Varna, Bulgaria. ⁴¹⁴The University of Tokyo, Tokyo, Japan. 1572 ⁴¹⁵Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria. ⁴¹⁶The Hospital for 1573 Sick Children, Toronto, Ontario, Canada. ⁴¹⁷Deakin University, Geelong, Victoria, Australia. 1574 ⁴¹⁸Emory University, Atlanta, GA, USA. ⁴¹⁹Bulgarian Academy of Sciences, Sofia, Bulgaria. 1575 ⁴²⁰Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan. ⁴²¹Hadassah University Medical 1576 Center, Jerusalem, Israel. ⁴²²Université Catholique de Louvain, Brussels, Belgium. ⁴²³Gambia 1577 National Nutrition Agency, Banjul, The Gambia. ⁴²⁴Kuwait Institute for Scientific Research, Safat, 1578 Kuwait. ⁴²⁵Public Health Agency of Sweden, Solna, Sweden. ⁴²⁶Norwegian University of Science 1579 and Technology, Trondheim, Norway. ⁴²⁷University of Melbourne, Melbourne, Victoria, Australia. 1580 ⁴²⁸Sports University of Tirana, Tirana, Albania. ⁴²⁹Heart Foundation, Melbourne, Victoria, 1581 Australia. ⁴³⁰Guangzhou 12th Hospital, Guangzhou, China. ⁴³¹Universidad Eugenio Maria de 1582 Hostos, Santo Domingo, Dominican Republic. ⁴³²Simon Fraser University, Burnaby, British 1583 Columbia, Canada. ⁴³³Institute of Molecular and Clinical Ophthalmology Basel, Basel, 1584 Switzerland. ⁴³⁴University of New South Wales, Sydney, New South Wales, Australia. ⁴³⁵World 1585 Health Organization Country Office, Delhi, India. ⁴³⁶Guilan University of Medical Sciences, Rasht, 1586 Iran. ⁴³⁷University of Opole, Opole, Poland. ⁴³⁸Gulu University, Gulu, Uganda. ⁴³⁹University of 1587 Crete, Heraklion, Greece. ⁴⁴⁰Hungarian School Sport Federation, Budapest, Hungary. ⁴⁴¹National 1588 Center for Disease Control and Public Health, Tbilisi, Georgia. 442 Ministry of Health, Bratislava, 1589 Slovakia. 443Sri Venkateswara University, Tirupati, India. 444Sree Chitra Tirunal Institute for 1590 Medical Sciences and Technology, Trivandrum, India. ⁴⁴⁵Hellenic Medical Association for Obesity, 1591 Athens, Greece. 446 Harokopio University, Athens, Greece. 447 National and Kapodistrian University 1592 of Athens, Athens, Greece. ⁴⁴⁸Maharajgunj Medical Campus, Kathmandu, Nepal. ⁴⁴⁹Université 1593 Officielle de Bukavu, Bukavu, DR Congo. ⁴⁵⁰Aarhus University, Aarhus, Denmark. ⁴⁵¹Johns 1594 1595 Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. ⁴⁵²Pennington Biomedical Research Center, Baton Rouge, LA, USA. ⁴⁵³National Institute of Epidemiology, Chennai, India. 1596 ⁴⁵⁴University of Toronto, Toronto, Ontario, Canada. ⁴⁵⁵University of Münster, Münster, Germany. 1597 ⁴⁵⁶Israel Center for Disease Control, Ramat Gan, Israel. ⁴⁵⁷Research Institute for Primordial 1598 Prevention of Non-communicable Disease, Isfahan, Iran. ⁴⁵⁸Kyrgyz State Medical Academy, 1599 Bishkek, Kyrgyzstan.⁴⁵⁹Research Institute of Child Nutrition, Dortmund, Germany.⁴⁶⁰Shahrekord 1600 University of Medical Sciences, Shahrekord, Iran. ⁴⁶¹University of Cambridge, Cambridge, UK. 1601 ⁴⁶²Mazandaran University of Medical Sciences, Sari, Iran. ⁴⁶³Hypertension Research Center, 1602 Isfahan, Iran. ⁴⁶⁴Medical University of Innsbruck, Innsbruck, Austria. ⁴⁶⁵VASCage, Innsbruck, 1603 Austria. ⁴⁶⁶Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania. 1604 ⁴⁶⁷Yonsei University College of Medicine, Seoul, Republic of Korea. ⁴⁶⁸National Cancer Center, 1605 Goyang-si, Republic of Korea. ⁴⁶⁹Sahlgrenska University Hospital, Gothenburg, Sweden. 1606 ⁴⁷⁰Newcastle University, Newcastle, UK. ⁴⁷¹University College South Denmark, Haderslev, 1607 Denmark. ⁴⁷²Statistics Austria, Vienna, Austria. ⁴⁷³B. P. Koirala Institute of Health Sciences, 1608 Dharan, Nepal. ⁴⁷⁴University of Vienna, Vienna, Austria. ⁴⁷⁵Tartu University Clinics, Tartu, Estonia. 1609 ⁴⁷⁶Kansai Medical University, Hirakata, Japan. ⁴⁷⁷District Department of State Public Health 1610

Service, Hildburghausen, Germany. ⁴⁷⁸Pontificia Universidad Católica Argentina, Buenos Aires, 1611 Argentina. ⁴⁷⁹Ministry of Health and Wellness, Port Louis, Mauritius. ⁴⁸⁰University Hospital Ulm, 1612 Ulm, Germany. ⁴⁸¹Croatian Institute of Public Health, Zagreb, Croatia. ⁴⁸²Institute of Nutrition of 1613 Central America and Panama, Guatemala City, Guatemala. ⁴⁸³North-West University, 1614 Potchefstroom, South Africa. ⁴⁸⁴South African Medical Research Council, Potchefstroom, South 1615 Africa. ⁴⁸⁵University of Physical Education, Kraków, Poland. ⁴⁸⁶University of Jyväskylä, Jyväskylä, 1616 Finland. ⁴⁸⁷Institute of Public Health, Podgorica, Montenegro. ⁴⁸⁸Amrita Institute of Medical 1617 Sciences, Cochin, India. ⁴⁸⁹Institute of Endocrinology, Prague, Czech Republic. ⁴⁹⁰All India 1618 Institute of Medical Sciences, New Delhi, India. 491 African Population and Health Research 1619 Center, Nairobi, Kenya. ⁴⁹²Hanoi University of Public Health, Hanoi, Vietnam. ⁴⁹³Hassan First 1620 University of Settat, Settat, Morocco. ⁴⁹⁴Ministry of Health, Algiers, Algeria. ⁴⁹⁵Ministry of Health, 1621 Georgetown, Guyana. ⁴⁹⁶Sahlgrenska Academy, Gothenburg, Sweden. ⁴⁹⁷Endocrinology and 1622 Metabolism Research Center, Tehran, Iran. 498 Clinical Research Education, Networking & 1623 Consultancy, Douala, Cameroon. ⁴⁹⁹University of Public Health, Yangon, Myanmar. ⁵⁰⁰Centro 1624 Studi Epidemiologici di Gubbio, Gubbio, Italy.⁵⁰¹National University Health System, Singapore, 1625 Singapore. ⁵⁰²University of Leicester, Leicester, UK. ⁵⁰³Tampere University Hospital, Tampere, 1626 Finland. ⁵⁰⁴Tampere University, Tampere, Finland. ⁵⁰⁵University of Douala, Douala, Cameroon. 1627 ⁵⁰⁶University of Cape Town, Cape Town, South Africa. ⁵⁰⁷West Virginia University, Morgantown, 1628 WV, USA. ⁵⁰⁸Oswaldo Cruz Foundation Rene Rachou Research Institute, Belo Horizonte, Brazil. 1629 1630 ⁵⁰⁹Shanghai Institute of Nutrition and Health of Chinese Academy of Sciences, Shanghai, China. ⁵¹⁰Uppsala University, Uppsala, Sweden. ⁵¹¹Capital Medical University Beijing An Zhen Hospital, 1631 Beijing, China. ⁵¹²Taipei Medical University, Taipei, Taiwan. ⁵¹³Servicio Andaluz de Salud, Sevilla, 1632 Spain. ⁵¹⁴Sports Medical Center of Minho, Braga, Portugal. ⁵¹⁵Universidad San Martín de Porres, 1633 Lima, Peru. ⁵¹⁶Consejería de Sanidad Junta de Castilla y León, Valladolid, Spain. ⁵¹⁷Universidade 1634 Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil. ⁵¹⁸llembula Lutheran 1635 Hospital, Ilembula, Tanzania. ⁵¹⁹University of Kinshasa Hospital, Kinshasa, DR Congo. 1636 ⁵²⁰Coimbra University Hospital Center, Coimbra, Portugal. ⁵²¹University of Texas Rio Grande 1637 Valley, Harlingen, TX, USA. ⁵²²Institute of Neuroscience of the National Research Council, Padua, 1638 Italy. ⁵²³Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. ⁵²⁴Agricultural 1639 University of Athens, Athens, Greece. ⁵²⁵Academia VBHC, São Paulo, Brazil. ⁵²⁶SB RAS Federal 1640 1641 Research Center Institute of Cytology and Genetics, Novosibirsk, Russia. 527Université Catholique de Bukavu, Bukavu, DR Congo. ⁵²⁸University of Northern British Columbia, Prince 1642 George, British Columbia, Canada. ⁵²⁹University of Padua, Padua, Italy. ⁵³⁰University Medicine 1643 Greifswald, Greifswald, Germany. ⁵³¹Hellenic Mediterranean University, Siteia, Greece. 1644 ⁵³²Loughborough University, Loughborough, UK. ⁵³³Ministry of Health, Nicosia, Cyprus. 1645 ⁵³⁴Lausanne University Hospital, Lausanne, Switzerland. ⁵³⁵University of Lausanne, Lausanne, 1646 Switzerland. ⁵³⁶Secretaria de Estado da Saúde de Santa Catarina, Florianópolis, Brazil. 1647 ⁵³⁷CIBERCV, Barcelona, Spain. ⁵³⁸Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, 1648 Spain. ⁵³⁹Mary Immaculate College, Limerick, Ireland. ⁵⁴⁰Hungarian Society of Sports Medicine, 1649 Budapest, Hungary. ⁵⁴¹Paracelsus Medical University, Salzburg, Austria. ⁵⁴²Institute for Cancer 1650 Research, Prevention and Clinical Network, Florence, Italy. ⁵⁴³Universidade Estadual do Centro-1651 Oeste, Guarapuava, Brazil. ⁵⁴⁴Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India. 1652 ⁵⁴⁵UiT The Arctic University of Norway, Tromsø, Norway. ⁵⁴⁶ICMR - National Centre for Disease 1653 Informatics and Research, Bengaluru, India. ⁵⁴⁷Sefako Makgatho Health Sciences University, 1654 Pretoria, South Africa. ⁵⁴⁸Centro de Estudos do Laboratório de Aptidão Física de São Caetano do 1655 Sul, São Paulo, Brazil. ⁵⁴⁹Brown University, Providence, RI, USA. ⁵⁵⁰London School of Hygiene & 1656 Tropical Medicine, London, UK. ⁵⁵¹University of Edinburgh, Edinburgh, UK. ⁵⁵²Weill Cornell 1657 Medicine, New York City, NY, USA. ⁵⁵³Institut National de la Santé et de la Recherche Médicale, 1658 Lille, France. ⁵⁵⁴Arabkir Medical Centre-Institute of Child and Adolescent Health, Yerevan, 1659 Armenia. 555Universidad de los Andes, Bogotá, Colombia. 556Robert Koch Institute, Berlin, 1660 Germany. ⁵⁵⁷University of Abidjan, Abidjan, Côte d'Ivoire. ⁵⁵⁸Pirogov Russian National Research 1661

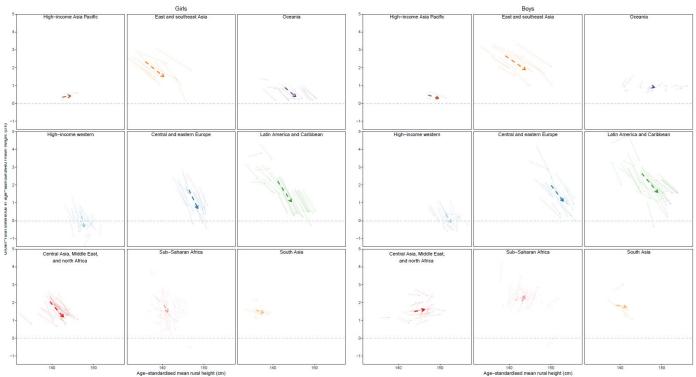
Medical University, Moscow, Russia. ⁵⁵⁹Universidade de Lisboa, Lisbon, Portugal. ⁵⁶⁰Saveetha 1662 Dental Colleges & Hospitals, Chennai, India. ⁵⁶¹Democritus University, Alexandroupolis, Greece. 1663 ⁵⁶²Grigore T Popa University of Medicine and Pharmacy, Iasi, Romania. ⁵⁶³Università degli Studi 1664 di Firenze, Florence, Italy. 564 Ain Shams University, Cairo, Egypt. 565 Isfahan Cardiovascular 1665 Research Center, Isfahan, Iran. ⁵⁶⁶Strasbourg University Hospital, Strasbourg, France. ⁵⁶⁷Mulago 1666 Hospital, Kampala, Uganda. ⁵⁶⁸Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama 1667 City, Panama. ⁵⁶⁹University of Limpopo, Sovenga, South Africa. ⁵⁷⁰University of Medical Sciences 1668 of Cienfuegos, Cienfuegos, Cuba. ⁵⁷¹Ministry of Health and Wellness, Belmopan, Belize. ⁵⁷²Royal 1669 College of Surgeons in Ireland, Dublin, Ireland. ⁵⁷³La Trobe University, Melbourne, Victoria, 1670 Australia. ⁵⁷⁴Sabzevar University of Medical Sciences, Sabzevar, Iran. ⁵⁷⁵International Institute of 1671 Molecular and Cell Biology, Warsaw, Poland. ⁵⁷⁶World Health Organization Country Office, 1672 Lilongwe, Malawi. ⁵⁷⁷Department of Public Health, Nay Pyi Taw, Myanmar. ⁵⁷⁸Albanian Sports 1673 1674 Science Association, Tirana, Albania. ⁵⁷⁹University of Brescia, Brescia, Italy. ⁵⁸⁰University of Limerick, Limerick, Ireland. ⁵⁸¹Makerere University School of Public Health, Kampala, Uganda. 1675 ⁵⁸²University de Kinshasa, Kinshasa, DR Congo. ⁵⁸³Bushehr University of Medical Sciences, 1676 Bushehr, Iran. ⁵⁸⁴Ulm University, Ulm, Germany. ⁵⁸⁵Suraj Eye Institute, Nagpur, India. ⁵⁸⁶UNICEF, 1677 Yaoundé, Cameroon. 587 Ministry of Health, Apia, Samoa. 588 Karolinska Institutet, Stockholm, 1678 Sweden. ⁵⁸⁹National Institute of Hygiene and Epidemiology, Hanoi, Vietnam. ⁵⁹⁰University of 1679 Medicine and Pharmacy, Ho Chi Minh City, Vietnam. ⁵⁹¹Hanoi Medical University, Hanoi, Vietnam. 1680 ⁵⁹²Xi'an Jiaotong University, Xi'an, China. ⁵⁹³LifeDoc Health, Memphis, TN, USA. ⁵⁹⁴Heartfile, 1681 Islamabad, Pakistan. ⁵⁹⁵Eastern Mediterranean Public Health Network, Amman, Jordan. 1682 ⁵⁹⁶University of Manchester, Manchester, UK. ⁵⁹⁷State University of Medicine and Pharmacy, 1683 1684 Chisinau, Moldova. ⁵⁹⁸Tachikawa General Hospital, Nagaoka, Japan. ⁵⁹⁹University of Abuja College of Health Sciences, Abuja, Nigeria. 600 Korea Centers for Disease Control and Prevention, 1685 Cheongju-si, Republic of Korea. 601 Japan Wildlife Research Center, Tokyo, Japan. 602 Gadarif 1686 University, Gadarif, Sudan. ⁶⁰³Istanbul University, Istanbul, Turkey. ⁶⁰⁴Ministry of Health, Bandar 1687 Seri Begawan, Brunei. 605 University of Madeira, Funchal, Portugal. 606 University of Puerto Rico, 1688 San Juan, Puerto Rico. 607 Osteoporosis Research Center, Tehran, Iran. 608 Universidad de 1689 Santander, Bucaramanga, Colombia. ⁶⁰⁹Kwame Nkrumah University of Science and Technology, 1690 Kumasi, Ghana. ⁶¹⁰University of Wisconsin-Madison, Madison, WI, USA. ⁶¹¹Privatpraxis Prof 1691 1692 Jonas und Dr Panda-Jonas, Heidelberg, Germany.⁶¹²IRCCS Ente Ospedaliero Specializzato in Gastroenterologia S. de Bellis, Bari, Italy.⁶¹³Zayed University, Abu Dhabi, United Arab Emirates. 1693 ⁶¹⁴Catholic University of Daegu, Daegu, Republic of Korea. ⁶¹⁵University of Medicine, Pharmacy, 1694 Science and Technology of Târgu Mures, Târgu Mures, Romania. ⁶¹⁶ Jivandeep Hospital, Anand, 1695 India. ⁶¹⁷Centro de Investigação em Saúde de Angola, Caxito, Angola. ⁶¹⁸South African Medical 1696 1697 Research Council, Durban, South Africa.⁶¹⁹National Dental Care Centre Singapore, Singapore, Singapore. ⁶²⁰University Hospital of Varese, Varese, Italy. ⁶²¹Vietnam National Heart Institute, 1698 Hanoi, Vietnam, ⁶²²Clínica de Medicina Avanzada Dr. Abel González, Santo Domingo, Dominican 1699 1700 Republic. 623 University of Sarajevo, Sarajevo, Bosnia and Herzegovina. 624 Cardiovascular Prevention Centre Udine, Udine, Italy. ⁶²⁵University of Pisa, Pisa, Italy. ⁶²⁶Ministry of Health and 1701 Medical Services, Honiara, Solomon Islands. ⁶²⁷Public Health Agency of Catalonia, Barcelona, 1702 Spain. 628O. M. Marzevev Institute for Public Health of the National Academy of the Medical 1703 Sciences of Ukraine, Kyiv, Ukraine. ⁶²⁹Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. 1704 ⁶³⁰Ardabil University of Medical Sciences, Ardabil, Iran. ⁶³¹Universidade Pedagógica, Maputo, 1705 Mozambique. ⁶³²Centre for Disease Prevention and Control, Riga, Latvia. ⁶³³Sulaimani 1706 Polytechnic University, Sulaymaniyah, Iraq. ⁶³⁴Alborz University of Medical Sciences, Karaj, Iran. 1707 ⁶³⁵Ministry of Health, Hanoi, Vietnam. ⁶³⁶Pure Earth, Dhaka, Bangladesh. ⁶³⁷Institute of Epidemiology Disease Control and Research, Dhaka, Bangladesh. ⁶³⁸University of Turku, Turku, 1708 1709 Finland. ⁶³⁹UNICEF, Baku, Azerbaijan. ⁶⁴⁰World Health Organization Country Office, Juba, South 1710 Sudan.⁶⁴¹Instituto Federal Riograndense, Rio Grande, Brazil.⁶⁴²Institut Universitari d'Investigació 1711 en Atenció Primària Jordi Gol, Girona, Spain.⁶⁴³Universiti Putra Malaysia, Serdang, Malaysia. 1712

⁶⁴⁴University of Malaya, Kuala Lumpur, Malaysia. ⁶⁴⁵Sotiria Hospital, Athens, Greece. ⁶⁴⁶University 1713 of the Philippines, Manila, The Philippines. ⁶⁴⁷Slovak Academy of Sciences, Bratislava, Slovakia. 1714 ⁶⁴⁸University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil. ⁶⁴⁹Nutrition Research Foundation, 1715 Barcelona, Spain. ⁶⁵⁰Minas Gerais State Secretariat for Health, Belo Horizonte, Brazil. ⁶⁵¹CS S. 1716 Agustín Ibsalut, Palma, Spain. 652 Amsterdam Institute for Global Health and Development, 1717 Amsterdam, The Netherlands. ⁶⁵³Universidade Nove de Julho, São Paulo, Brazil. ⁶⁵⁴Ministerio de 1718 Salud, Panama City, Panama. ⁶⁵⁵Public Health Agency of Canada, Ottawa, Ontario, Canada. 1719 ⁶⁵⁶Universidad Industrial de Santander, Bucaramanga, Colombia. ⁶⁵⁷Ministry of Health and Social 1720 Protection, Bogotá, Colombia. 658Wuqu' Kawoq, Tecpan, Guatemala. 659GroundWork, Fläsch, 1721 Switzerland. ⁶⁶⁰Associazione Calabrese di Epatologia, Reggio Calabria, Italy. ⁶⁶¹University of 1722 Minho, Braga, Portugal. ⁶⁶²Fiji National University, Suva, Fiji. ⁶⁶³GHESKIO Clinics, Port-au-Prince, 1723 Haiti. 664Universidad de San Carlos, Quetzaltenango, Guatemala. 665National Center for 1724 Epidemiology CIBERESP, Madrid, Spain. ⁶⁶⁶Institute of Food Sciences of the National Research 1725 Council, Avellino, Italy. 667 Medical University of Gdansk, Gdansk, Poland. 668 Sitaram Bhartia 1726 Institute of Science and Research, New Delhi, India. ⁶⁶⁹Kindergarten of Avlonari, Evia, Greece. 1727 ⁶⁷⁰National Institute of Health, Lima, Peru. ⁶⁷¹Ministry of Health, Jakarta, Indonesia. ⁶⁷²Catalan Department of Health, Barcelona, Spain. ⁶⁷³Biodonostia Health Research Institute, San 1728 1729 Sebastián, Spain. ⁶⁷⁴Instituto de Saúde Ambiental, Lisbon, Portugal. ⁶⁷⁵Federal University of 1730 Alagoas, Maceió, Brazil. ⁶⁷⁶South Karelia Social and Health Care District, Lappeenranta, Finland. 1731 ⁶⁷⁷National Cancer Center, Tokyo, Japan. ⁶⁷⁸University of São Paulo Clinics Hospital, São Paulo, 1732 Brazil. 679Hospital Italiano de Buenos Aires, Buenos Aires, Argentina. 680Medical University of 1733 Vienna, Vienna, Austria. ⁶⁸¹Rigshospitalet, Copenhagen, Denmark. ⁶⁸²Academic Medical Center 1734 1735 of University of Amsterdam, Amsterdam, The Netherlands. ⁶⁸³German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.⁶⁸⁴The George Institute for Global Health, Sydney, 1736 New South Wales, Australia. 685Center for Oral Health Services and Research Mid-Norway, 1737 Trondheim, Norway. ⁶⁸⁶Lagos State University College of Medicine, Lagos, Nigeria. ⁶⁸⁷University 1738 of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain. 688Comenius University, 1739 Bratislava, Slovakia. 689 Teikyo University, Tokyo, Japan. 690 Finnish Institute of Occupational 1740 Health, Helsinki, Finland. ⁶⁹¹Rutgers University, New Brunswick, NJ, USA. ⁶⁹²National Agency for 1741 Public Health, Chisinau, Moldova.⁶⁹³St Vincent's Hospital, Sydney, New South Wales, Australia. 1742 1743 ⁶⁹⁴Nes Municipality, Årnes, Norway, ⁶⁹⁵Health Polytechnic Jakarta II Institute, Jakarta, Indonesia. ⁶⁹⁶Diponegoro University, Semarang, Indonesia. ⁶⁹⁷University of Bari, Bari, Italy. ⁶⁹⁸Institut 1744 Régional de Santé Publique, Ouidah, Benin. 699 University of Bordeaux, Bordeaux, France. 1745 ⁷⁰⁰University of Hohenheim, Stuttgart, Germany. ⁷⁰¹Oslo Metropolitan University, Oslo, Norway. 1746 ⁷⁰²Institute of Public Health, Skopje, North Macedonia. ⁷⁰³Ss. Cyril and Methodius University, 1747 1748 Skopje, North Macedonia. ⁷⁰⁴Lamprecht und Stamm Sozialforschung und Beratung AG, Zurich, Switzerland. ⁷⁰⁵Bonn University, Bonn, Germany. ⁷⁰⁶National Institute of Public Health - National 1749 Institute of Hygiene, Warsaw, Poland. ⁷⁰⁷Kalina Malina Kindergarten, Pazardjik, Bulgaria. ⁷⁰⁸The 1750 Jikei University School of Medicine, Tokyo, Japan. ⁷⁰⁹Fu Jen Catholic University, Taipei, Taiwan. 1751 ⁷¹⁰University of Jordan, Amman, Jordan. ⁷¹¹National Statistical Office, Praia, Cabo Verde. 1752 ⁷¹²Monash University, Melbourne, Victoria, Australia. ⁷¹³Scientific Research Institute of Maternal 1753 and Child Health, Ashgabat, Turkmenistan. ⁷¹⁴University of Lincoln, Lincoln, UK. ⁷¹⁵Ministry of 1754 Health, Amman, Jordan. ⁷¹⁶UNICEF, Niamey, Niger. ⁷¹⁷University of Applied Sciences Utrecht, 1755 Utrecht, The Netherlands. ⁷¹⁸University Medical Center Utrecht, Utrecht, The Netherlands. 1756 ⁷¹⁹National Research and Innovation Agency, Jakarta, Indonesia. ⁷²⁰Health Service, Murcia, 1757 Spain. ⁷²¹Institut d'Investigacio Sanitaria Illes Balears, Menorca, Spain. ⁷²²University of Bologna, 1758 1759 Bologna, Italy. ⁷²³Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada. ⁷²⁴Hellenic Health Foundation, Athens, Greece. ⁷²⁵Government Medical College, 1760 Bhavnagar, India.⁷²⁶Institute of Epidemiology and Preventive Medicine, Taipei, Taiwan.⁷²⁷Sefako 1761 Makgatho Health Sciences University, Ga-Rankuwa, South Africa. ⁷²⁸Department of Health, 1762 Faga'alu, American Samoa. ⁷²⁹LBJ Hospital, Faga'alu, American Samoa. ⁷³⁰Addis Ababa 1763

University, Addis Ababa, Ethiopia. ⁷³¹Ministry of Health, Wellington, New Zealand. ⁷³²Israel 1764 Defense Forces Medical Corps, Tel HaShomer, Israel. ⁷³³Universidad Centro-Occidental Lisandro 1765 Alvarado, Barquisimeto, Venezuela. ⁷³⁴Meharry Medical College, Nashville, TN, USA. 1766 ⁷³⁵University of Tampere Tays Eye Center, Tampere, Finland. ⁷³⁶Sabiha Gokcen Ilkokulu, Ankara, 1767 Turkey. ⁷³⁷Polytechnic Institute of Porto, Porto, Portugal. ⁷³⁸Icahn School of Medicine at Mount 1768 Sinai, New York City, NY, USA. 739George Washington University, Washington, DC, USA. 1769 1770 ⁷⁴⁰Universidad CEU San Pablo, Madrid, Spain. ⁷⁴¹Institute of Clinical Physiology of National Research Council, Pisa, Italy. ⁷⁴²Universidad San Francisco de Quito, Quito, Ecuador. 1771 ⁷⁴³University Miguel Hernandez, Alicante, Spain. ⁷⁴⁴Université de Lorraine, Nancy, France. 1772 ⁷⁴⁵Sunflower Nursery School, Craiova, Romania. ⁷⁴⁶North Karelia Center for Public Health, 1773 Joensuu, Finland. ⁷⁴⁷University of the Witwatersrand, Johannesburg, South Africa. ⁷⁴⁸Institute for 1774 Medical Research, Kuala Lumpur, Malaysia. ⁷⁴⁹Xinjiang Medical University, Urumqi, China. 1775 1776 ⁷⁵⁰Shanghai Educational Development Co. Ltd, Shanghai, China. ⁷⁵¹Ministry of Health and Welfare, Taipei, Taiwan. 752 Ministry of Health and Wellness, Kingston, Jamaica. 753 Örebro 1777 University, Örebro, Sweden, ⁷⁵⁴St George's, University of London, London, UK, ⁷⁵⁵Universitas 1778 Indonesia, Jakarta, Indonesia. ⁷⁵⁶Rehamed-Center, Tajęcina, Poland. ⁷⁵⁷National Yang Ming 1779 Chiao Tung University, Taipei, Taiwan. ⁷⁵⁸Institute of Food and Nutrition Development of Ministry 1780 of Agriculture and Rural Affairs, Beijing, China. ⁷⁵⁹Beijing Institute of Ophthalmology, Beijing, 1781 China. ⁷⁶⁰Children's Hospital of Fudan University, Shanghai, China. ⁷⁶¹University of Cyprus, 1782 Nicosia, Cyprus. ⁷⁶²Niigata University, Niigata, Japan. ⁷⁶³South China Institute of Environmental 1783 Sciences, Guangzhou, China. ⁷⁶⁴International Medical University, Shah Alam, Malaysia. 1784 ⁷⁶⁵Hellenic Mediterranean University, Heraklion, Greece. ⁷⁶⁶Iran University of Medical Sciences, 1785 1786 Tehran, Iran. ⁷⁶⁷Center for Diabetes and Endocrine Care, Srinagar, India. ⁷⁶⁸Jagiellonian University, Kraków, Poland. ⁷⁶⁹Duke University, Durham, NC, USA. ⁷⁷⁰Peking University First 1787 Hospital, Beijing, China. ⁷⁷¹Jiangsu Provincial Center for Disease Control and Prevention, 1788 Nanjing, China. ⁷⁷²West Kazakhstan Medical University, Aktobe, Kazakhstan. ⁷⁷³Inner Mongolia 1789 Medical University, Hohhot, China. ⁷⁷⁴Przedszkole No. 81, Warsaw, Poland. ⁷⁷⁵Johns Hopkins 1790 University, Baltimore, MD, USA, 776 deceased, 1791

1792 Fig. 1. Change in the urban-rural height difference from 1990 to 2020.

1793


1794 Change in urban-rural difference in age-standardised mean height in relation to change in age-1795 standardised mean rural height.

Each solid arrow in lighter shade shows one country, beginning in 1990 and ending in 2020. The dashed arrows in darker shade show the regional averages, calculated as the unweighted arithmetic mean of the values for all countries in each region along the horizontal and vertical axes. For urban-rural difference, a positive number shows higher urban mean height and a negative number shows higher rural mean height.

See Extended Data Fig. 2 for urban-rural differences in age-standardised mean height, and their
change over time shown as maps, together with uncertainties in the estimates. See
Supplementary Figure 4A for results at ages 5, 10, 15 and 19 years.

1804 We did not estimate the difference between rural and urban height for areas classified as entirely

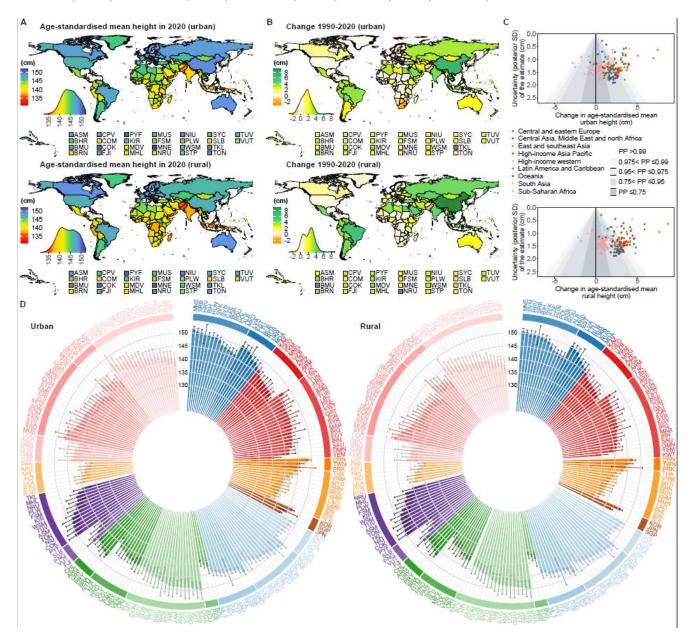
1805 urban (Bermuda, Kuwait, Nauru and Singapore) or entirely rural (Tokelau)

1807 Fig. 2. Urban and rural height in 2020 and change from 1990 to 2020 for girls.

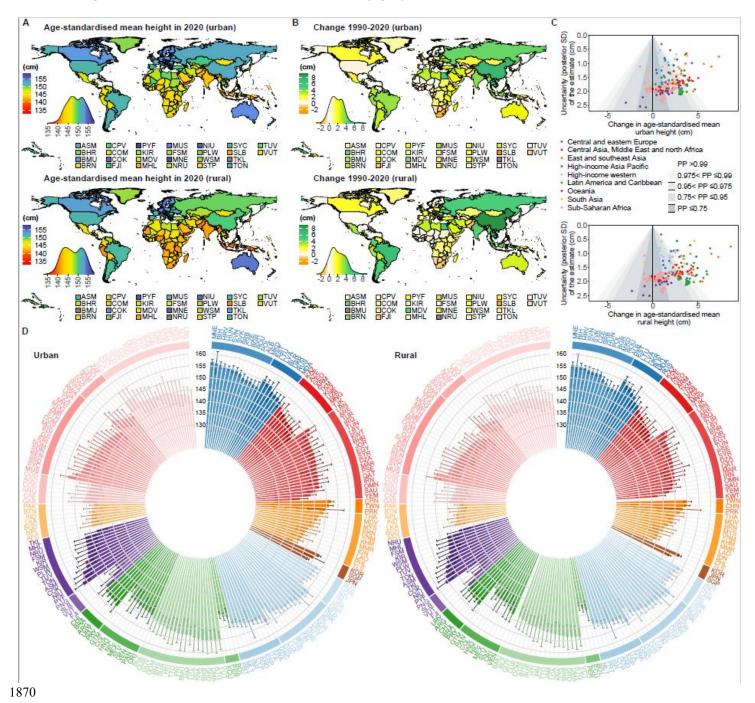
1808 (A) The maps show age-standardised mean height in 2020 by urban and rural place of residence for girls. The density plots show the distribution of estimates across countries. (B) The maps show 1809 age-standardised change in mean height from 1990 to 2020, by urban and rural place of residence 1810 1811 for girls. The density plots show the distribution of estimates across countries. (C) The scatter 1812 plots show the change from 1990 to 2020 in mean height in relation to the uncertainty of the change measured by posterior standard deviation. Each point in the scatter plots shows one 1813 country. Shaded areas show the posterior probability (PP) of an estimated change being a true 1814 increase or decrease. The PP of a decrease is one minus that of an increase. If an increase in 1815 1816 mean height is statistically indistinguishable from a decrease, the PP of an increase and a 1817 decrease is 0.50. PPs closer to 0.50 indicate more uncertainty, those towards 1 indicate more certainty of change. (D) The circular plots show the age-standardised mean height in 2020 for all 1818 1819 countries. The height of each column is the posterior mean estimate shown together with its 95% 1820 credible interval. Countries are ordered by region and super-region.

See Extended Data Fig. 4 for a map of PPs of the estimated change. See Supplementary Figure
5 for results at ages 5, 10, 15 and 19 years. See Supplementary Table 3 for numerical results,
including credible intervals, as age-standardised and at ages 5, 10, 15 and 19 years.

We did not estimate mean rural height in areas classified as entirely urban (Bermuda, Kuwait, Nauru and Singapore), mean urban height in areas classified as entirely rural (Tokelau), or their change over time in these areas, as indicated by grey colour.


Countries are labelled using their International Organization for Standardization (ISO) codes.
Afghanistan, AFG; Albania, ALB; Algeria, DZA; American Samoa, ASM; Andorra, AND; Angola,
AGO; Antigua and Barbuda, ATG; Argentina, ARG; Armenia, ARM; Australia, AUS; Austria, AUT;
Azerbaijan, AZE; Bahamas, BHS; Bahrain, BHR; Bangladesh, BGD; Barbados, BRB; Belarus,
BLR; Belgium, BEL; Belize, BLZ; Benin, BEN; Bermuda, BMU; Bhutan, BTN; Bolivia, BOL; Bosnia

1832 and Herzegovina, BIH; Botswana, BWA; Brazil, BRA; Brunei Darussalam, BRN; Bulgaria, BGR; 1833 Burkina Faso, BFA; Burundi, BDI; Cabo Verde, CPV; Cambodia, KHM; Cameroon, CMR; 1834 Canada, CAN; Central African Republic, CAF; Chad, TCD; Chile, CHL; China, CHN; Colombia, 1835 COL; Comoros, COM; Congo, COG; Cook Islands, COK; Costa Rica, CRI; Cote d'Ivoire, CIV; 1836 Croatia, HRV; Cuba, CUB; Cyprus, CYP; Czechia, CZE; Denmark, DNK; Djibouti, DJI; Dominica, DMA; Dominican Republic, DOM; DR Congo, COD; Ecuador, ECU; Egypt, EGY; El Salvador, 1837 SLV; Equatorial Guinea, GNQ; Eritrea, ERI; Estonia, EST; Eswatini, SWZ; Ethiopia, ETH; Fiji, 1838 FJI; Finland, FIN; France, FRA; French Polynesia, PYF; Gabon, GAB; Gambia, GMB; Georgia, 1839 GEO; Germany, DEU; Ghana, GHA; Greece, GRC; Greenland, GRL; Grenada, GRD; Guatemala, 1840 GTM; Guinea Bissau, GNB; Guinea, GIN; Guyana, GUY; Haiti, HTI; Honduras, HND; Hungary, 1841 HUN; Iceland, ISL; India, IND; Indonesia, IDN; Iran, IRN; Iraq, IRQ; Ireland, IRL; Israel, ISR; Italy, 1842 1843 ITA; Jamaica, JAM; Japan, JPN; Jordan, JOR; Kazakhstan, KAZ; Kenya, KEN; Kiribati, KIR; Kuwait, KWT; Kyrgyzstan, KGZ; Lao PDR, LAO; Latvia, LVA; Lebanon, LBN; Lesotho, LSO; 1844 Liberia, LBR; Libya, LBY; Lithuania, LTU; Luxembourg, LUX; Madagascar, MDG; Malawi, MWI; 1845 Malaysia, MYS; Maldives, MDV; Mali, MLI; Malta, MLT; Marshall Islands, MHL; Mauritania, MRT; 1846 Mauritius, MUS; Mexico, MEX; Micronesia (Federated States of), FSM; Moldova, MDA; Mongolia, 1847 1848 MNG; Montenegro, MNE; Morocco, MAR; Mozambique, MOZ; Myanmar, MMR; Namibia, NAM; Nauru, NRU; Nepal, NPL; Netherlands, NLD; New Zealand, NZL; Nicaragua, NIC; Niger, NER; 1849 1850 Nigeria, NGA; Niue, NIU; North Korea, PRK; North Macedonia, MKD; Norway, NOR; Occupied Palestinian Territory, PSE; Oman, OMN; Pakistan, PAK; Palau, PLW; Panama, PAN; Papua New 1851 Guinea, PNG; Paraguay, PRY; Peru, PER; Philippines, PHL; Poland, POL; Portugal, PRT; Puerto 1852 Rico, PRI; Qatar, QAT; Romania, ROU; Russian Federation, RUS; Rwanda, RWA; Saint Kitts 1853 and Nevis, KNA; Saint Lucia, LCA; Samoa, WSM; Sao Tome and Principe, STP; Saudi Arabia, 1854 1855 SAU; Senegal, SEN; Serbia, SRB; Seychelles, SYC; Sierra Leone, SLE; Singapore, SGP; Slovakia, SVK; Slovenia, SVN; Solomon Islands, SLB; Somalia, SOM; South Africa, ZAF; South 1856 Korea, KOR; South Sudan, SSD; Spain, ESP; Sri Lanka, LKA; Saint Vincent and the Grenadines, 1857


VCT; Sudan, SDN; Suriname, SUR; Sweden, SWE; Switzerland, CHE; Syrian Arab Republic,
SYR; Taiwan, TWN; Tajikistan, TJK; Tanzania, TZA; Thailand, THA; Timor-Leste, TLS; Togo,
TGO; Tokelau, TKL; Tonga, TON; Trinidad and Tobago, TTO; Tunisia, TUN; Turkey, TUR;
Turkmenistan, TKM; Tuvalu, TUV; Uganda, UGA; Ukraine, UKR; United Arab Emirates, ARE;
United Kingdom, GBR; United States of America, USA; Uruguay, URY; Uzbekistan, UZB;
Vanuatu, VUT; Venezuela, VEN; Viet Nam, VNM; Yemen, YEM; Zambia, ZMB.

1865 Fig. 3. Urban and rural height in 2020 and change from 1990 to 2020 for boys.

- 1866 See Fig. 2 caption for descriptions of the contents of the figure and for definitions.
- 1867 We did not estimate mean rural height in areas classified as entirely urban (Bermuda, Kuwait,
- 1868 Nauru and Singapore), mean urban height in areas classified as entirely rural (Tokelau), or their
- 1869 change over time in these areas, as indicated by grey colour.

1871 Fig. 4. Change in the urban-rural body-mass-index (BMI) difference from 1990 to 2020.

1872

1873 Change in urban-rural difference in age-standardised mean BMI in relation to change in age-1874 standardised mean rural BMI. See Fig. 1 caption for description of figure contents.

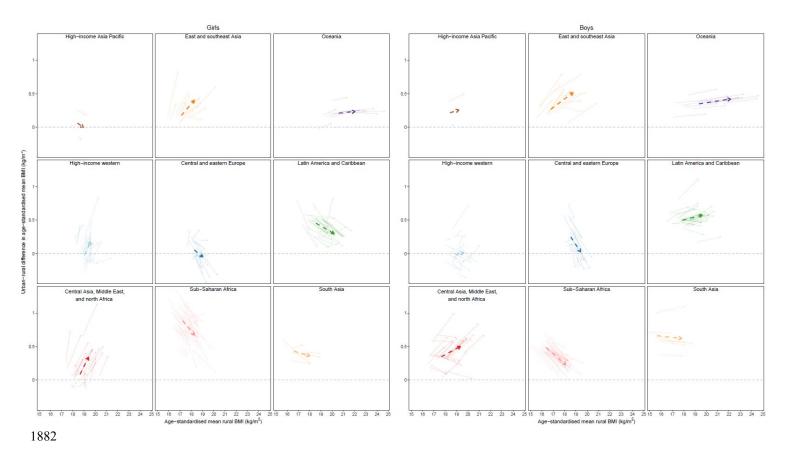
1875

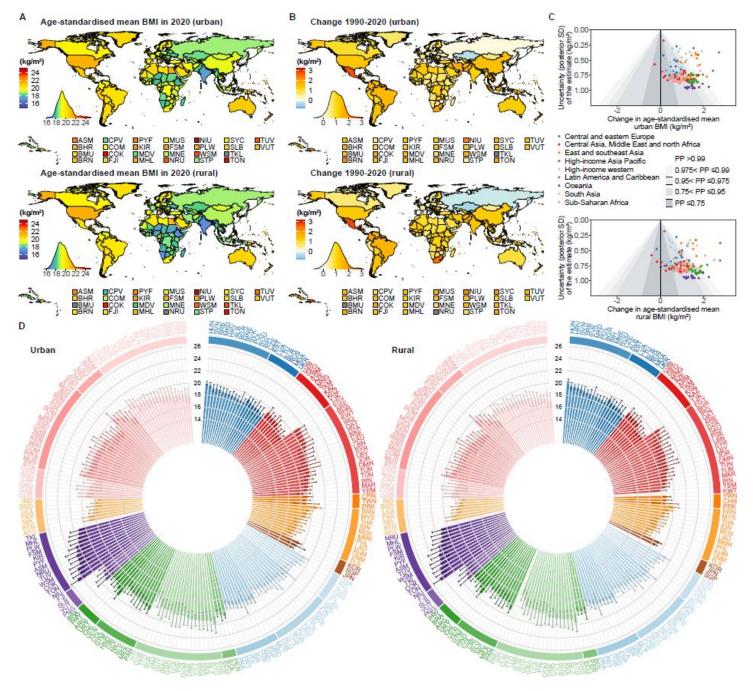
See Extended Data Fig. 3 for urban-rural differences in age-standardised mean BMI, and their
change over time shown as maps, together with uncertainties in the estimates. See
Supplementary Figure 4B for results at ages 5, 10, 15 and 19 years.

1879

1880 We did not estimate the difference between rural and urban BMI for areas classified as entirely

1881 urban (Bermuda, Kuwait, Nauru and Singapore) or entirely rural (Tokelau).




Fig. 5. Urban and rural body-mass index (BMI) in 2020 and change from 1990 to 2020 forgirls.

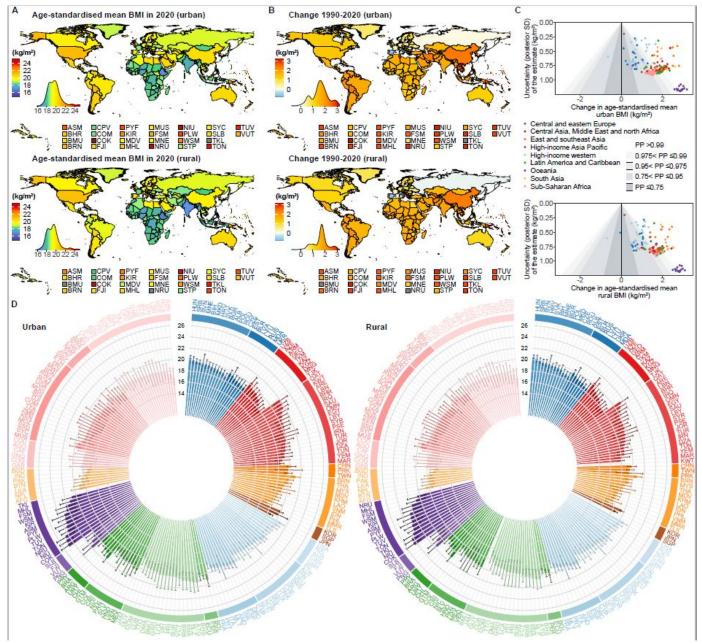
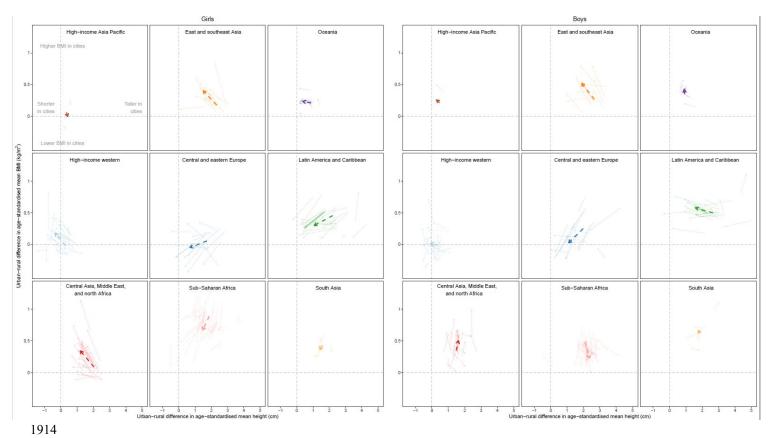
1885

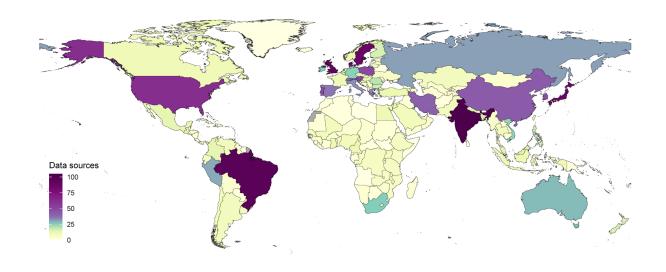
1886 See Fig. 2 caption for descriptions of the contents of the figure and for definitions.

- See Extended Data Fig. 5 for a map of posterior probabilities of the estimated change. See
 Supplementary Figure 6 for results at ages 5, 10, 15 and 19 years. See Supplementary Table 4
 for numerical results, including credible intervals, as age-standardised and at ages 5, 10, 15 and
 19 years.
 We did not estimate mean rural BMI in areas classified as entirely urban (Singapore, Bermuda)
- and Nauru), mean urban BMI in areas classified as entirely rural (Tokelau), or their change over
 time, as indicated by grey colour.

1897 Fig. 6. Urban and rural body-mass index (BMI) in 2020 and change from 1990 to 2020 for

- 1898 **boys**.
- 1899 See Fig. 2 caption for descriptions of the contents of the figure and for definitions.
- 1900 We did not estimate mean rural BMI in areas classified as entirely urban (Singapore, Bermuda
- and Nauru), mean urban BMI in areas classified as entirely rural (Tokelau), or their change over
- 1902 time, as indicated by grey colour.


Fig. 7. Change in the urban-rural height and body-mass-index (BMI) difference from 1990
to 2020.

- 1907 Change in urban-rural difference in age-standardised mean height and urban-rural difference in
- age-standardised mean BMI. See Fig. 1 caption for description figure contents.
- 1909
- 1910 See Supplementary Figure 4C for results at ages 5, 10, 15 and 19 years.
- 1911
- 1912 We did not estimate the difference between rural and urban height and BMI for areas classified
- as entirely urban (Bermuda, Kuwait, Nauru and Singapore) or entirely rural (Tokelau).

1915 Extended Data Fig. 1. Number of data sources used in the analysis, by country.

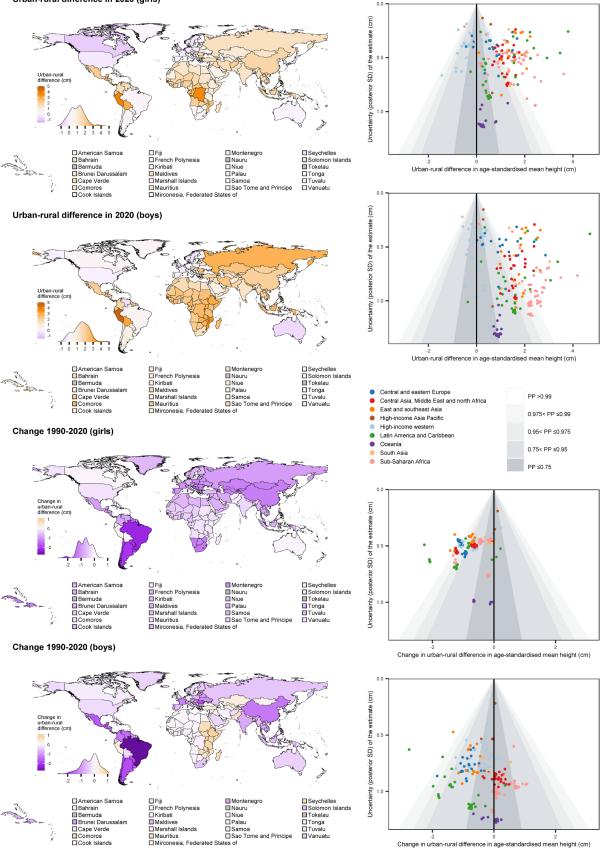
- American Samoa
 Bahrain
 Bermuda
 Brunei Darussalam
 Cape Verde
 Comoros
 Cook Islands
- Fiji
 French Polynesia
 Kiribati
 Maldives
 Marshall Islands
- Mauritius
 Mirconesia, Federated States of
- Montenegro
 Nauru
 Niue
 Palau
 Samoa
 Sao Tome and Principe
- Seychelles
 Solomon Islands
 Tokelau
 Tonga
- Tuvalu
- 📃 Vanuatu

1916

1917 Extended Data Fig. 2. Urban-rural height difference in 2020 and change from 1990 to 2020. 1918

1919 The top two maps show the urban-rural difference in age-standardised mean height in 2020 for 1920 girls and boys resepectively. A positive number shows higher urban mean height and a negative 1921 number shows higher rural mean height. The bottom two maps show the change from 1990 to 1922 2020. The density plot below each map shows the distribution of estimates across countries. The top two scatter plots show the urban-rural difference in age-standardised mean height in relation 1923 to the uncertainty of the change measured by posterior standard deviation. The bottom two scatter 1924 plots in each panel show the change from 1990 to 2020 in urban-rural difference in mean height 1925 in relation to the uncertainty of the change measured by posterior standard deviation. Each point 1926 in the scatter plots shows one country. Shaded areas show the posterior probability (PP) of a true 1927 1928 difference (top two scatter plots) and of a true increase or decrease in difference (bottom two 1929 scatter plots).

1930


See Extended Data Fig. 8 for PPs of the urban-rural difference in age-standardised mean height
and its change. See Supplementary Figure 7 for results at ages 5, 10, 15 and 19 years.

1933

We did not estimate the difference between rural and urban height for areas classified as entirely
urban (Bermuda, Kuwait, Nauru and Singapore) or entirely rural (Tokelau), as indicated by grey
colour.

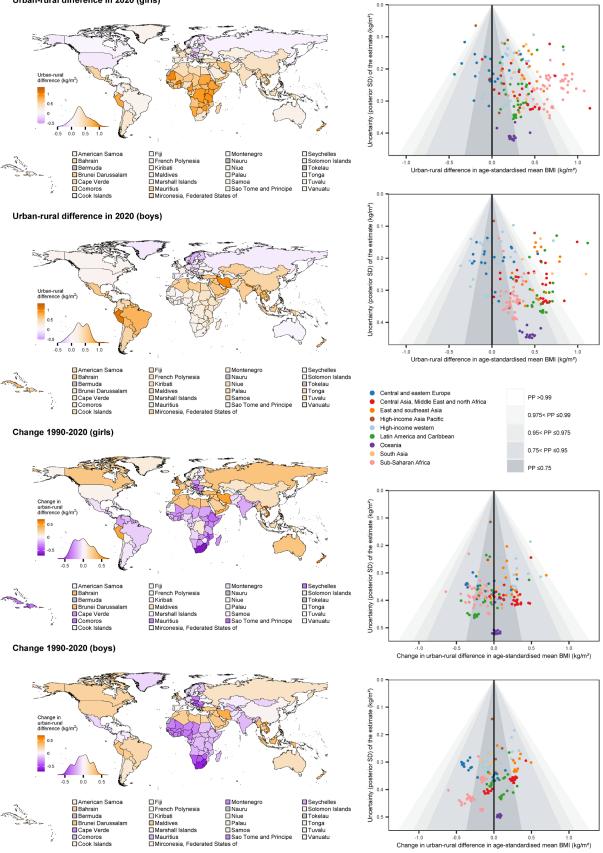
Urban-rural difference in 2020 (girls)

Change in urban-rural difference in age-standardised mean height (cm)

Extended Data Fig. 3. Urban-rural body-mass index (BMI) difference in 2020 and change
from 1990 to 2020.

1940

- 1941 See Extended Data Fig. 2 caption for descriptions of the contents of the figure and for definitions.1942
- 1943 See Extended Data Fig. 9 for posterior probabilities of the urban-rural difference in age-1944 standardised mean BMI and its change. See Supplementary Figure 8 for results at ages 5, 10, 15 1945 and 19 years.

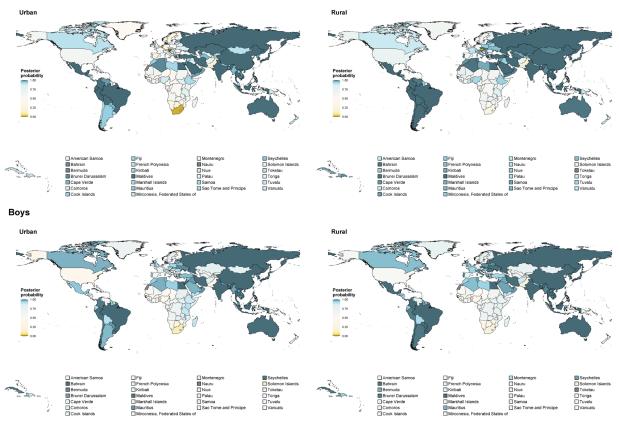

1946

- 1947 We did not estimate the difference between rural and urban BMI for areas classified as entirely
- 1948 urban (Bermuda, Kuwait, Nauru and Singapore) or entirely rural (Tokelau), as indicated by grey

1949 **colour**.

Urban-rural difference in 2020 (girls)

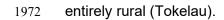
Extended Data Fig. 4. Posterior probability of increase in mean height in urban and rural areas from 1990 to 2020.

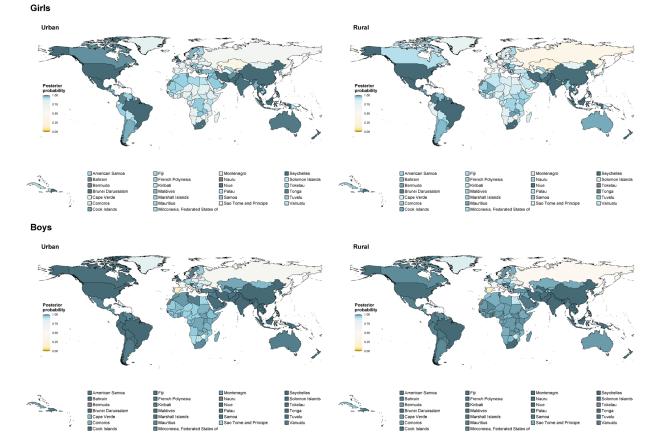

1953

The maps show the posterior probability (PP) that the age-standardised mean height increased from 1990 to 2020. The PP of a decrease is one minus that of an increase. If an increase in mean height is statistically indistinguishable from a decrease, the PP is 0.50. PPs closer to 0.50 indicate more uncertainty, those towards 1 indicate more certainty of an increase, and those towards 0 indicate more certainty of a decrease.

1959

We did not estimate PP for change in mean rural height for areas classified as entirely urban
(Bermuda, Kuwait, Nauru and Singapore) or change in mean urban height for areas classified as
entirely rural (Tokelau).

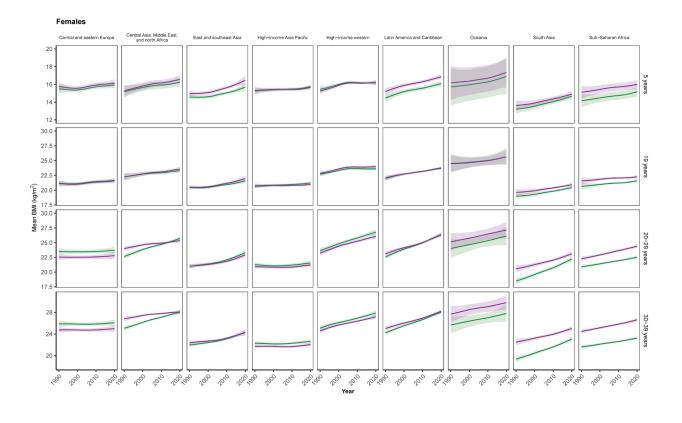




Extended Data Fig. 5. Posterior probability of increase in mean body-mass index (BMI) in urban and rural areas from 1990 to 2020.

1966

- 1967 The maps show the posterior probability (PP) that the age-standardised mean BMI increased 1968 from 1990 to 2020. The PP of a decrease is one minus that of an increase.
- 1969
- 1970 We did not estimate PP for change in mean rural BMI in areas classified as entirely urban
- 1971 (Bermuda, Kuwait, Nauru and Singapore) or change in mean urban BMI in areas classified as

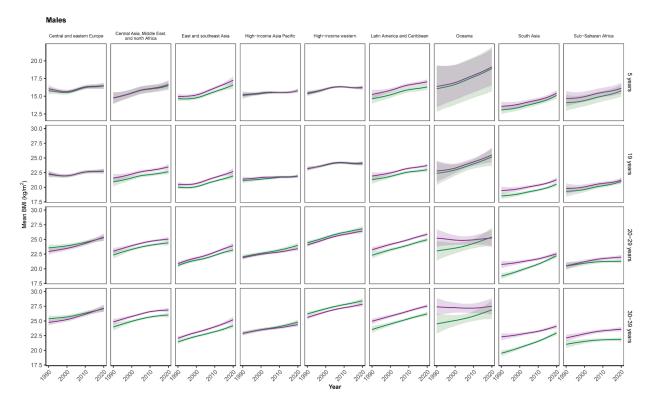


1974 Extended Data Fig. 6. Trends in body-mass index (BMI) by place of residence for children, 1975 adolescents and young adults for females.

1976

The figure shows trends in mean BMI at ages five and 19 years, and in age-standardised mean BMI for young adults (20-29 years and 30-39 years) for females. Shaded areas show the 95% credible intervals. Trend for young adults were estimated using a model similar to the one described in Methods, where BMI-age patterns were allowed to vary flexibly via a cubic spline function without knots.

Rural


Urban

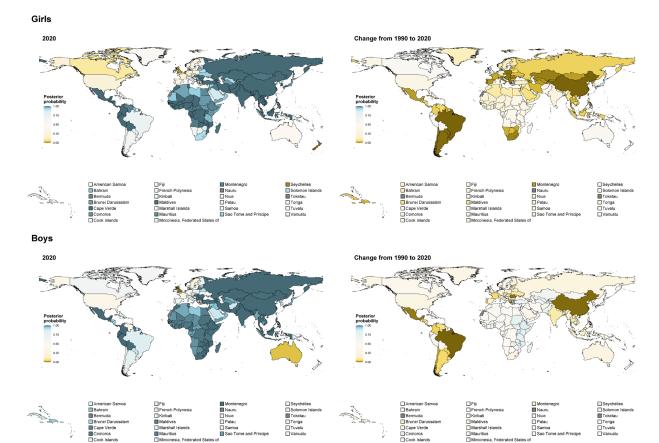
Extended Data Fig. 7. Trends in body-mass index (BMI) by place of residence for children, adolescents and young adults for males.

1985

The figure shows trends in mean BMI at ages five and 19 years, and in age-standardised mean
BMI for young adults (20-29 years and 30-39 years) for males. See Extended Data Fig. 6 caption
for description of figure contents.

Rural

Urban

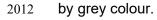

Extended Data Fig. 8. Posterior probability of urban-rural height difference in 2020 and its increase from 1990 to 2020.

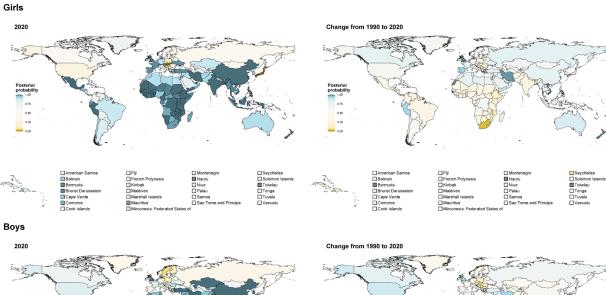
The maps show the posterior probability (PP) that age-standardised mean height in 2020 in urban areas was higher than in rural areas (left-hand panels), and the PP that the urban-rural difference in age-standardised mean height increased from 1990 to 2020 (right-hand panels). For 2020, if estimated age-standardised mean urban height is statistically indistinguishable from rural height, the PP is 0.50. PPs closer to 0.50 indicate more uncertainty, those towards 1 indicate more certainty of urban children being taller, and those towards 0 indicate more certainty of rural being taller.

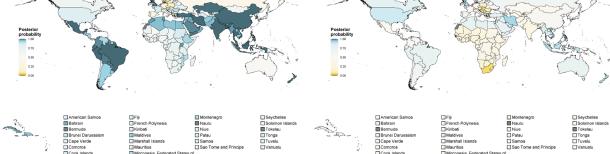
1999 We did not estimate the PP for differences between rural and urban height for areas classified as

2000 entirely urban (Bermuda, Kuwait, Nauru and Singapore) or entirely rural (Tokelau), as indicated

2001 by grey colour.


Extended Data Fig. 9. Posterior probability of urban-rural body-mass index (BMI) difference in 2020 and its increase from 1990 to 2020.


2005


The maps show the posterior probability (PP) that age-standardised mean BMI in 2020 in urban areas was higher than in rural areas (left-hand panels), and the PP that the urban-rural difference in mean BMI increased from 1990 to 2020 (right-hand panels).

2009

We did not estimate the PP for differences between rural and urban BMI for areas classified as entirely urban (Bermuda, Kuwait, Nauru and Singapore) or entirely rural (Tokelau), as indicated

